基于改进AES的配电智能终端数据混合加密研究  

Research on data hybrid encryption of power distribution intelligent terminalbased on improved AES

在线阅读下载全文

作  者:吴旦 郭志诚 何炬良 谢小瑜 尹湘源 WU Dan;GUO Zhicheng;HE Juliang;XIE Xiaoyu;YIN Xiangyuan(China Southern Power Grid,Digital Grid Research Institute Co.,Ltd.,Guangzhou 510663,China)

机构地区:[1]南方电网数字电网研究院有限公司,广东广州510663

出  处:《电子设计工程》2024年第2期61-64,共4页Electronic Design Engineering

基  金:福建省教育厅科技项目(JA13233);厦门市重大科技项目(3502Z20111008)。

摘  要:配电智能终端数据是配电网数据的重要组成部分,针对配电智能终端数据加密耗时过长,加密安全性较低的问题,提出基于改进AES的配电智能终端数据混合加密方法。对AES算法进行改进,通过字节替换、行位移、列混淆和轮密钥实现迭代运算,得到初始密钥,通过建立椭圆曲线方程,分析系数坐标得到密钥结果。利用初始密文进行字段拆解,获取加密粒度。根据加密粒度逐层实现系统加密、服务器加密和客户端加密,完成配电智能终端数据混合加密。实验结果表明,该方法的密钥生成时间始终为1 ms,不受数据包数量的影响,能够阻挡99%以上的外来入侵信息,提高了加密安全性。Distribution intelligent terminal data is an important part of distribution network data.Aiming at the problems of long⁃time encryption and low encryption security of distribution intelligent terminal data,a hybrid encryption method of power distribution intelligent terminal data based on improved AES is proposed.The AES algorithm is improved,the initial key is obtained by iterating through byte replacement,row displacement,column confusion and round key.The key result is obtained by establishing elliptic curve equation and analyzing coefficient coordinates.The initial ciphertext is used to disassemble the fields to obtain the encryption granularity.According to the encryption granularity,the system encryption,server encryption and client encryption are realized layer by layer,and the mixed encryption of distribution intelligent terminal data is completed.The experimental results show that the key generation time of this method is always 1 ms,which is not affected by the number of packets.It can block more than 99%of the foreign intrusion information and improve the encryption security.

关 键 词:改进AES 配电智能终端 加密密钥 混合加密 

分 类 号:TN-9[电子电信]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象