检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张文福 李沐阳[1] 郭雪妞 邵琰皓 黄斌 计静 刘迎春[4] ZHANG Wenfu;LI Muyang;CUO Xueniu;SHAO Yanhao;HUANG Bin;JI Jing;LIU Yingchun(College of Civil Engineering,Suzhou University of Science and Technology,Suzhou 215031,China;College of Civil Engineering,Anhui Jianzhu University,Hefei 230601,China;School of Architectural Engineering,Nanjing Institute of Technology,Nanjing 211167,China;School of Civil Engineering and Architecture,Northeast Petroleum University,Daqing 163318,China)
机构地区:[1]苏州科技大学土木工程学院,江苏苏州215031 [2]安徽建筑大学土木工程学院,安徽合肥230601 [3]南京工程学院建筑工程学院,江苏南京211167 [4]东北石油大学土木建筑工程学院,黑龙江大庆163318
出 处:《南京工程学院学报(自然科学版)》2023年第3期72-78,共7页Journal of Nanjing Institute of Technology(Natural Science Edition)
摘 要:传统薄壁杆件理论主要依据乌曼斯基第二理论,存在一定的局限性.本文通过刚周边假设得到槽形截面横向位移,基于Euler梁理论和Kirchhoff板理论建立槽形截面的应力、应变关系,推导得到槽形截面组合扭转的能量方程;运用有限元软件ANSYS模拟验证了本文方法的正确性.本文研究表明Euler梁理论和Kirchhoff板理论分析槽形截面薄壁杆件组合扭转的可行性,相应的研究成果可为该类截面的设计提供参考.Traditional thin-walled bar theory is mainly based on Wumanski's second theory,which shows some limitations.Transverse displacement of channel sections was obtained by using rigid perimeter hypothesis.Energy equation of combined torsion of channel sections was then deduced based on stress-strain relationship obtained through adopting Eulerbeam theory and Kirchhoff-plate theory.The correctness of the analytical solution was verified by using finite element software ANSYS.The results show that Euler-beam theory and Kirchhoff-plate theory are applicable to study combined torsion of thin-walled bars with channel section.Relevant research results can shed light on designing sections of similar kind.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.175