检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李康乐[1] 张云逸 韩劲松[1] 贺维 Li Kangle;Zhang Yunyi;Han Jinsong;He Wei(Harbin Finance University,Harbin 150030,China;College of Computer Science&Information Engineering,Harbin Normal University,Harbin 150025,China;Rocket Force University of Engineering,Xi’an 710025,China)
机构地区:[1]哈尔滨金融学院,哈尔滨150030 [2]哈尔滨师范大学计算机科学与信息工程学院,哈尔滨150025 [3]火箭军工程大学,西安710025
出 处:《计算机应用研究》2023年第12期3551-3558,共8页Application Research of Computers
基 金:中国博士后科学基金资助项目;黑龙江省自然科学基金资助项目。
摘 要:锂离子电池凭借其优越的储能性能被广泛应用在许多领域,而随着使用时间增加,锂离子电池的老化加剧容易导致不同程度的故障,因此对锂离子电池进行在线故障诊断至关重要。为了进一步提高故障诊断的准确率和透明性,提出使用连续概率分布证据推理(ER)规则的故障诊断模型,并使用优化方法优化相关参数。首先,从充放电过程中提取能反映电池健康状态(SOH)的特征指标,采用Spearman相关系数分析特征指标与SOH之间的关联来提取健康因子;第二,考虑到电池的故障信息具有不确定性,提出一种基于ER规则的连续概率分布参考点的故障诊断方法,采用高斯分布描述参考点,实现在线故障诊断;第三,设计了一种带约束的鲸鱼优化算法(WOA)优化证据参数,构建GER-W故障诊断模型,使模型故障诊断准确率达到最优;最后,通过分析SOH对故障进行模糊划分,以NASA电池数据集为例验证GER-W模型的有效性,此外还将模型拓展到电池SOH估计中。验证结果表明,GER-W模型对比其他故障诊断方法具有更高准确率且诊断过程更加透明,在SOH估计中也有一定效果。Lithium-ion batteries are widely used in various fields due to their superior energy storage performance.However,with the increase of using time,the aging of lithium-ion batteries is prone to lead to different failure degrees,so online fault diagnosis for lithium-ion batteries is crucial.To improve the accuracy and transparency of fault diagnosis,this paper proposed a fault diagnosis model based on continuous probability distribution evidential reasoning(ER)rule,and optimized the related parameters by optimization method.Firstly,this paper extracted characteristic indicators that could reflect batteries’state of health(SOH)from charging and discharging process,and used Spearman correlation coefficient to analyze the correlation between characteristic indicators and the SOH to extract health indexes.Secondly,considering the uncertainty of battery fault information,this paper proposed a fault diagnosis method based on continuous probability distribution reference points of evidential reasoning(ER)rule,it used Gaussian distribution to describe the reference points,so as to achieve online fault diagnosis.Thirdly,it designed a whale optimization algorithm(WOA)with constraints to optimize evidence parameters to construct the GER-W fault diagnosis model,so that the accuracy of model fault diagnosis reached the best.Finally,it made fuzzy division of faults by analyzing SOH,and verified the effectiveness of the GER-W model by taking the NASA battery data set as an example.In addition,the model was extended to batteries’SOH estimation.The verification results show that GER-W model has higher accuracy and more transparent process than other fault diagnosis methods,and it also has a certain effect in SOH estimation.
关 键 词:锂离子电池 故障诊断 证据推理规则 高斯分布 信息转换 鲸鱼优化算法
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171