Strong gravitational lensing of blazar gamma-radiation and intergalactic magnetic fields  

在线阅读下载全文

作  者:Yu.N.Eroshenko 

机构地区:[1]Institute for Nuclear Research of the Russian Academy of Sciences 60th October Anniversary Prospect 7a,117312 Moscow,Russi

出  处:《Chinese Physics C》2024年第1期184-191,共8页中国物理C(英文版)

摘  要:The influence of intergalactic magnetic fields on the strong gravitational lensing of blazar secondary gamma radiation is discussed.Currently,two cases of strong gravitational lensing of blazar gamma-radiation are known,where radiation is deflected by galaxies on the line of sight between the blazars and Earth.The magnetic field can affect the movements of electron-positron pairs generated by primary radiation,thereby changing the directions of secondary gamma radiation.It modifies the equation of the gravitational lens and leads to the dependence of the observed signal in the secondary gamma radiation on the energy of photons and magnetic field.Accordingly,it is possible,in principle,to estimate the intergalactic magnetic fields from the time delay of signals,from the angular position of images(for future high-resolution gamma-ray telescopes)or from the shape of the observed energy spectrum.This method is demonstrated by the example of the blazar B0218+357.In this case,however,it is not possible to obtain useful constraints due to the large distances to the blazar and lens galaxy.The result is only a lower limit on the magnetic field B>2×10^(−17)G,which is weaker than other existing constraints.However,future discoveries of lensed blazars may provide more favorable opportunities for measuring the magnetic fields,especially with the help of a new generation of gamma-ray telescopes such as e-ASTROGAM,GECAM,and SVOM as well as future gamma-ray telescopes with a high angular resolution,∼0.1″.

关 键 词:gravitational lensing BLAZAR gamma-astronomy intergalactic magnetic fields 

分 类 号:P172.3[天文地球—天文学] P353.8

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象