Frobenius函子和投射余可解Gorenstein平坦模  

Frobenius Functors and Projectively Coresolved Gorenstein Flat Modules

在线阅读下载全文

作  者:刘义佳 LIU Yi-jia(School of Mathematical Sciences,Chongqing Normal University,Chongqing 401331,China)

机构地区:[1]重庆师范大学数学科学学院,重庆401331

出  处:《南宁师范大学学报(自然科学版)》2023年第4期10-15,共6页Journal of Nanning Normal University:Natural Science Edition

基  金:重庆市自然科学基金项目(cstc2021jcyj-msxmX0048)。

摘  要:该文研究投射余可解Gorenstein平坦模及其维数在Frobenius函子作用下的同调不变性.设R和S是环,_(S)M_(R)是Frobenius双模且M_(R)是生成子,则R-模X是投射余可解Gorenstein平坦的当且仅当MRX是投射余可解Gorenstein平坦S-模,并且当F:_(R)M→_(S)M是忠实的Frobenius函子时有PGfd(_(R)X)=PGfd(_(S)F(X)),从而投射余可解Gorenstein平坦模及其维数在环的Frobenius扩张下是保持的.还证明了环的PGF整体维数在环的可裂Frobenius扩张下是不变的.This paper investigates the homological invariance of projectively coresolved Gorenstein flat modules and their dimensions under a Frobenius functor.Let R and S be rings,_(S)M_(R) be a Frobenius bimodule and M_(R) be a generator.Then an R-module X is projectively coresolved Gorenstein flat if and only if M_(R)X is a projectively coresolved Gorenstein flat S-module;and we have PGfd(_(R)X)=PGfd(_(S)F(X))when F:_(R)M→_(S)M is a faithful Frobenius functor,so projectively coresolved Gorenstein flat modules and their dimensions are preserved under a Frobenius extension of rings.It is also shown that the PGF global dimension of a ring is invariant under a split Frobenius extension of rings.

关 键 词:Frobenius函子 投射余可解Gorenstein平坦模 投射余可解Gorenstein平坦维数 Frobenius扩张 

分 类 号:O154.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象