检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈丽安 过弋[1,2,3] CHEN Li’an;GUO Yi(College of Information Science and Engineering,East China University of Science and Technology,Shanghai 200237,China;National Engineering Laboratory for Big Data Distribution and Exchange Technologies(Shanghai Data Exchange),Shanghai 200436,China;Shanghai Engineering Research Center of Big Data&Internet Audience,Shanghai 200072,China)
机构地区:[1]华东理工大学信息科学与工程学院,上海200237 [2]大数据流通与交易技术国家工程实验室(上海数据交易所),上海200436 [3]上海大数据与互联网受众工程技术研究中心,上海200072
出 处:《计算机应用》2024年第1期145-151,共7页journal of Computer Applications
基 金:上海市科学技术委员会科技计划项目(22DZ1204903,22511104800)。
摘 要:目前情感分析任务经常只聚焦于评论文本本身,忽略了评论者与被评论者的个体偏差特征,会显著影响对文本的整体情感判断。针对上述问题,提出一种融合评论双边个体偏差信息的文本情感分析模型UP-ATL(User and Product-Attention TranLSTM)。该模型使用自注意力机制、交叉注意力机制对评论文本与个体偏差信息分别进行双向融合,在融合过程中采用定制化权重的计算方式,以缓解实际应用场景中冷启动带来的数据稀疏问题,最终得到特征充分融合的评论文本和评论双边的表示信息。选取餐饮领域、电影领域的三个真实公开数据集Yelp2013、Yelp2014、IMDB进行效果验证,与UPNN(User Product Neural Network)、NSC(Neural Sentiment Classification)、CMA(Cascading Multiway Attention)、HUAPA(Hierarchical User And Product multi-head Attention)等基准模型进行比较。实验结果表明,相较于比较模型中最好的HUAPA模型,UP-ATL的准确度在三个数据集上依次分别提高了6.9、5.9和1.6个百分点。However,current text sentiment analysis often focus on the comment text itself,but ignore individual bias information between commenters and commentees,which has a considerable impact on the overall sentiment analysis.A text sentiment analysis model based on individual bias information,named UP-ATL(User and Product-Attention TranLSTM),was proposed.In the model,self-attention mechanism and cross-attention mechanism were used to fuse the comment text and individual bias information in both directions.During the fusion process,a customized weight calculation method was used to alleviate the data sparsity problem caused by cold start in practical application scenarios.Finally,the feature fully fused comment text and bilateral representation information of the comment were obtained.Three real public datasets,Yelp2013,Yelp2014,and IMDB,were selected for effectiveness verification in the restaurant and film fields.The proposed model was compared with benchmark models such as UPNN(User Product Neural Network),NSC(Neural Sentiment Classification),CMA(Cascading Multiway Attention)and HUAPA(Hierarchical User And Product multi-head Attention).The experimental results show that compared to the previous best performing HUAPA model,the accuracy of UP-ATL increases by 6.9 percentage points,5.9 percentage points,and 1.6 percentage points,respectively on three datasets.
关 键 词:文本情感分析 自注意力机制 交叉注意力机制 Transformer模型 长短期记忆网络
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222