检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:龙杰 谢良 徐海蛟 LONG Jie;XIE Liang;XU Haijiao(College of Science,Wuhan University of Technology,Wuhan Hubei 430070,China;College of Computer Science,Guangdong University of Education,Guangzhou Guangdong 510303,China)
机构地区:[1]武汉理工大学理学院,武汉430070 [2]广东第二师范学院计算机学院,广州510303
出 处:《计算机应用》2024年第1期300-310,共11页journal of Computer Applications
基 金:广东省自然科学基金资助项目(2020A1515011208);广州市基础研究教育计划基础与应用基础研究项目(202102080353);广东省普通高校自然科学类特色创新项目(2019KTSCX117)。
摘 要:投资组合问题是量化交易领域中的热点问题。针对现有基于深度强化学习的投资组合模型无法实现自适应的交易策略和有效利用有监督信息的缺陷,提出一种集成的深度强化学习投资组合模型(IDRLPM)。首先,采用多智能体方法构造多个基智能体并设计不同交易风格的奖励函数,以表示不同的交易策略;其次,利用集成学习方法对基智能体的策略网络进行特征融合,得到自适应市场环境的集成智能体;然后,在集成智能体中嵌入基于卷积块注意力模块(CBAM)的趋势预测网络,趋势预测网络输出引导集成策略网络自适应选择交易比重;最后,在有监督深度学习和强化学习交替迭代训练下,IDRLPM有效利用训练数据中的监督信息以增强模型盈利能力。在上证50的成分股和中证500的成分股数据集中,IDRLPM的夏普比率(SR)达到了1.87和1.88,累计收益(CR)达到了2.02和1.34;相较于集合式的深度强化学习(EDRL)交易模型,SR提高了105%和55%,CR提高了124%和79%。实验结果表明,IDRLPM能够有效解决投资组合问题。The portfolio problem is a hot issue in the field of quantitative trading.An Integrated Deep Reinforcement Learning Portfolio Model(IDRLPM)was proposed to address the shortcomings of existing deep reinforcement learning-based portfolio models that cannot achieve adaptive trading strategies and effectively utilize supervised information.Firstly,multiagent method was used to construct multiple base agents and design reward functions with different trading styles to represent different trading strategies.Secondly,integrated learning method was used to fuse the features of strategy network of the base agents to obtain the integrated agent adaptive to market environment.Then,a trend prediction network based on Convolutional Block Attention Module(CBAM)was embedded in the integrated agent,and the output of the trend prediction network guided integrated strategy network to adaptively select the proportion of trades.Finally,under the alternating iterative training of supervised deep learning and reinforcement learning,IDRLPM effectively utilized supervised information from training data to enhance model profitability.The Sharpe Ratio(SR)of IDRLPM reaches 1.87 and 1.88,and the Cumulative Return(CR)reaches 2.02 and 1.34 in Shanghai Stock Exchange(SSE)50 constituent stocks and China Securities Index(CSI)500 constituent stocks;compared with the Ensemble Deep Reinforcement Learning(EDRL)trading model,the SR improves by 105%and 55%,and the CR improves by 124%and 79%.The experimental results show that IDRLPM can effectively solve the portfolio problem.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.149.241.32