Multimodal Data-Driven Reinforcement Learning for Operational Decision-Making in Industrial Processes  

在线阅读下载全文

作  者:Chenliang Liu Yalin Wang Chunhua Yang Weihua Gui 

机构地区:[1]the School of Automation,Central South University,Changsha 410083,China [2]IEEE

出  处:《IEEE/CAA Journal of Automatica Sinica》2024年第1期252-254,共3页自动化学报(英文版)

基  金:supported by the National Key Research and Development Program of China (2020YFB1713800);the National Natural Science Foundation of China (92267205);the Hunan Provincial Innovation Foundation for Postgraduate (CX2022 0267);the Fundamental Research Funds for the Central Universities of Central South University (2022ZZTS0181)。

摘  要:Dear Editor, This letter proposes a multimodal data-driven reinforcement learning-based method for operational decision-making in industrial processes. Due to the frequent fluctuations of feedstock properties and operating conditions in the industrial processes, existing data-driven methods cannot effectively adjust the operational variables. In addition, multimodal data such as images, audio.

关 键 词:processes MODAL ADJUST 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象