检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张王刚[1] 任广笑 高建中 王红霞[1] 王超[1] 崔娇 王凯[1] ZHANG Wang-gang;REN Guang-xiao;GAO Jian-zhong;WANG Hong-xia;WANG Chao;CUI Jiao;WANG Kai(College of Materials Science and Engineering,Taiyuan University of Technology,Taiyuan 030024,China;Shanxi Jianghuai Heavy Industry Co.,Ltd.,Jincheng 048000,China)
机构地区:[1]太原理工大学材料科学与工程学院,山西太原030024 [2]山西江淮重工有限责任公司,山西晋城048000
出 处:《稀土》2023年第6期10-17,I0003,共9页Chinese Rare Earths
基 金:山西省自然科学基金项目(201903D421081;20210302123135;20210302123163;201901D111272);山西省科技成果转化引导专项(202104021301022);山西省重大专项资助项目(20191102008;20191102007);中国山西核心技术和共性技术研究开发项目(20201102018)。
摘 要:研究了热处理工艺对Mg-9Gd-2Nd-(1.5Zn)-0.5Zr合金组织和力学性能的影响,探索了LPSO相的形成机制。结果表明,铸态Mg-9Gd-2Nd-0.5Zr合金Ⅰ的组织由α-Mg基体和不规则条状第二相Mg_5RE组成,Zn元素加入使得铸态Mg-9Gd-2Nd-(1.5Zn)-0.5Zr合金Ⅱ中第二相转变为半连续网状(MgZn)_(3)RE相,体积分数增加,使得合金Ⅱ在525℃×5 h固溶后,第二相未能全部溶入基体中,同时晶内开始发生元素偏聚。随固溶时间延长至30 h(525℃),第二相固溶体积分数增加,晶内元素偏聚区形成了颗粒状析出相。之后随炉冷却至400℃保温4 h后,合金Ⅱ晶内析出大量的层片状LPSO相,晶内部分颗粒状相长大为针状相。综合对比确定Mg-9Gd-2Nd-(1.5Zn)-0.5Zr合金Ⅱ的最佳热处理工艺为525℃固溶处理30 h,炉冷至400℃保温4 h后水淬冷却至室温。热处理后的Mg-9Gd-2Nd-(1.5Zn)-0.5Zr合金Ⅱ对应的屈服强度、抗拉强度和伸长率分别为123.1 MPa、220.1 MPa和15.7%,塑性比固溶态Mg-9Gd-2Nd-0.5Zr合金Ⅰ大幅提升了91.5%。The effect of heat treatment on the microstructure and mechanical properties of the Mg-9Gd-2Nd-(1.5Zn)-0.5Zr alloy and formation mechanism of LPSO phase was investigated. The results showed that the structure of as-cast Mg-9Gd-2Nd-0.5Zr alloy Ⅰ is composed of α-Mg matrix and irregular strip-like eutectic phase Mg_(5)RE. The addition of Zn element makes as-cast Mg-9Gd-2Nd-(1.5Zn)-0.5Zr eutectic phase of alloy Ⅱ transform into a semi-continuous network(MgZn)_(3)RE phase, and the volume fraction increased, so that after alloy Ⅱ was solid-dissolved at 525 ℃ for 5 h, the eutectic phase could not be completely dissolved into the matrix, and element segregation occurred in the crystal. With the prolongation of the solid solution time to 30 h(525 ℃), the volume fraction of the eutectic phase in solid solution increases, and the segregation zone of the elements in the crystal formed a granular precipitation phase. After cooling to 400 ℃ for 4 h in the furnace, a large number of lamellar LPSO phases were precipitated in the crystal of alloy Ⅱ, and part of the granular phase in the crystal was long needle-like phase. Comprehensive comparison determined that the optimal heat treatment process for Mg-9Gd-2Nd-(1.5Zn)-0.5Zr alloy Ⅱ was solution treatment at 525 ℃ for 30 h, furnace cooling to 400 ℃ for 4 h, water quenching and cooling to room temperature. The yield strength, tensile strength and elongation of the heat-treated Mg-9Gd-2Nd-(1.5Zn)-0.5Zr alloy Ⅱ are 123.1 MPa, 220.1 MPa and 15.7%, respectively, and the plasticity is 91.5% higher than the solid solution Mg-9Gd-2Nd-0.5Zr alloy I.
分 类 号:TG146.2[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90