基于多源卫星数据的高邮湖长时序水位变化监测  被引量:1

Long time series monitoring of water level change in Gaoyou Lake based onmulti-source satellite data

在线阅读下载全文

作  者:陈健茹 徐佳[1] 王冬梅 CHEN Jianru;XU Jia;WANG Dongmei(College of Earth Science and Engineering,Hohai University,Nanjing 210000,China;Jiangsu Hydraulic Research Institute,Nanjing 210017,China)

机构地区:[1]河海大学地球科学与工程学院,江苏南京210000 [2]江苏省水利科学研究院,江苏南京210017

出  处:《人民长江》2024年第1期120-126,共7页Yangtze River

基  金:自然资源部国土卫星遥感应用重点实验室开放基金项目(KLSMNR-K202209);江苏省水利科技项目(2020061);中央高校基本科研业务费专项资金项目(B220202052)。

摘  要:湖泊水位是湖泊变化的重要指标之一,监测湖泊水位变化能够为水资源合理开发利用和流域水资源调度提供依据。以高邮湖为研究对象,基于T/P卫星和Jason-1/2/3卫星测高数据构建1993~2021年间水位序列,并采用M-K突变检验、滑动t检验等方法,结合气象及社会统计数据讨论高邮湖水位变化特征及影响因素。结果表明:综合利用T/P、Jason-1/2/3系列卫星可以实现高邮湖水位长时序监测,精度在0.22 m左右;综合长时序数据发现,高邮湖水位突变起始点在1997年,2003年年均水位达到峰值,其多年年内水位高峰期在7~10月,年内总体呈单峰分布。Lake water level change is one of the most crucial indicators of lake change.Monitoring this change can provide a basis for efficient development and use of water resources and water resource scheduling in river basins.Taking Gaoyou Lake as the research object,the water level sequence from 1993 to 2021 was constructed using T/P satellite and Jason-1/2/3 satellite altimeter data.Moreover,M-K mutation test and sliding t test were adopted to discuss the characteristics and influencing factors of water level change in Gaoyou Lake combined with meteorological and social statistical data.The results show that with a comprehensive use of the T/P-Jason1/2/3 series satellites,it is possible to monitor Gaoyou Lake s water level for a long time,with a 20 cm accuracy.Based on the long-term data,Gaoyou Lake s water level suddenly changed in 1997.In 2003,the annual average water level reached its peak,and the water level reached its peak in many years from July to October.The annual distribution was unimodal.

关 键 词:水位变化 T/P卫星 Jason-1/2/3卫星 长时序 高邮湖 

分 类 号:P237[天文地球—摄影测量与遥感]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象