S-E-MBR:一种基于E-MBR码的分布式存储系统扩容方法  

S-E-MBR:An Efficient Scaling Method for Distributed Storage Systems Based on E-MBR Codes

在线阅读下载全文

作  者:黎聪 唐聃[1,2] LI Cong;TANG Dan(School of Software Engineering,Chengdu University of Information Technology;Sichuan Province Engineering Technology Research Center of Support Software of Informatization Application,Chengdu 610225,China)

机构地区:[1]成都信息工程大学软件工程学院 [2]四川省信息化应用支撑软件工程技术研究中心,四川成都610225

出  处:《软件导刊》2024年第1期90-96,共7页Software Guide

基  金:四川省科技厅重点研发项目(2022YFG0037,2022YFG0033)。

摘  要:随着数据量的激增,以再生码为容错机制的分布式存储系统需要使用扩容技术扩充其存储容量。然而现有再生码扩容方法较少,在扩容时间与传输量方面有待提高。为此,针对在线分布式存储场景提出一种扩容方法 S-EMBR,以更高效的迁移方式降低迁移的数据块数量和I/O开销,减少校验更新时所需数据块,使其达到了理论数据块迁移量最优值。理论分析与实验结果表明,与RR与Scale-RS方法相比,S-E-MBR方法扩容时的数据传输量分别减少了52.7%~77.9%和41.3%~50.4%,扩容总时间分别减少了72.3%~75.4%和50.6%~53.5%,响应速度分别提升了39.2%和17.1%,可满足在线扩容场景需求。With the rapid increase in data volume,distributed storage systems using regenerative codes as fault tolerance mechanisms need to use scaling techniques to expand their storage capacity.However,there are few existing methods for expanding the capacity of regenerative codes,and there is room for improvement in terms of expansion time and transmission volume.To this end,a scaling method S-E-MBR is pro-posed for online distributed storage scenarios,which reduces the number of migrated data blocks and I/O(Input/Output)overhead in a more efficient migration manner,reduces the required data blocks for verification updates,and achieves the optimal theoretical data block migration amount.Theoretical analysis and experimental results show that compared with RR and Scale-RS methods,the S-E-MBR method reduces da-ta transmission by 52.7%~77.9%and 41.3%~50.4%respectively during expansion,reduces total expansion time by 72.3%~75.4%and 50.6%~53.5%respectively,and improves response speed by 39.2%and 17.1%,which can meet the needs of online expansion scenarios.

关 键 词:再生码 扩容方法 分布式存储 纠删码 传输量 

分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象