检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安科技大学理学院,西安710600 [2]西安科技大学计算机科学与技术学院,西安710600
出 处:《统计与决策》2024年第2期52-57,共6页Statistics & Decision
基 金:国家自然科学基金资助项目(71473194);陕西省科技厅自然科学基金资助项目(2020JM513)。
摘 要:文章提出两个改进的Ratio统计量来研究重尾AR(p)时间序列均值变点检验问题,在原假设下推导了统计量的渐近分布,且在备择假设下证明了其一致性。由于重尾指数未知且难以估计,因此结合Wild Bootstrap重抽样方法来确定渐近分布的临界值;在均值变点存在的情形下,给出了变点位置的一致估计量。数值模拟结果表明:统计量的临界值均不受重尾指数和自回归系数的影响,其经验水平和经验势均取得满意的效果;尤其在原假设下,积分型Ratio统计量的经验水平表现出更好的稳健性,而在备择假设下,最值型Ratio统计量则具备更好的显著性。最后,基于一组股票数据,从实际应用角度进一步阐明所提方法的有效性和可行性。
关 键 词:重尾序列 Ratio统计量 均值变点 Wild Bootstrap
分 类 号:O212[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.224.37.168