检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李海楠
机构地区:[1]河北省唐山水文勘测研究中心,河北唐山063000
出 处:《水利科技与经济》2024年第1期113-117,共5页Water Conservancy Science and Technology and Economy
摘 要:以唐山市1961-2018年逐月地表径流量资料为基础,运用集合经验模式分解(EEMD),将其分解成8个独立模态(IMF);利用贝叶斯正则化神经网络(BRNN)算法,拟合训练期内(1961-2000年)IMF与径流量之间的规律,用以预测预见期(2001-2018年)内的月径流量变化。结果显示,经EEMD分解得到的IMF序列与径流量之间呈显著相关性;BPNN模型在适当参数下准确模拟了径流量变化特征,其验证集的NSE(Nash-Sutcliffe系数)达20.27%、RMSE(均方根误差)仅为93.23%。EEMD-BRNN组合算法通过对原径流序列进行自适应分解,进而重构非线性平稳序列,显示出在径流预报中的应用前景。
关 键 词:EEMD模态分解算法 IMF模态特征 BRNN拟合模型 径流量预测
分 类 号:TV121[水利工程—水文学及水资源]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222