Comparative study of different machine learning models in landslide susceptibility assessment: A case study of Conghua District, Guangzhou, China  被引量:1

在线阅读下载全文

作  者:Ao Zhang Xin-wen Zhao Xing-yuezi Zhao Xiao-zhan Zheng Min Zeng Xuan Huang Pan Wu Tuo Jiang Shi-chang Wang Jun He Yi-yong Li 

机构地区:[1]Wuhan Center,China Geological Survey,Ministry of Natural Resources(Geosciences Innovation Center of Central South China),Wuhan 430205,China [2]Guangzhou Institute of Geological Survey,Guangzhou 510080,China [3]Hubei Transportation Planning Design Institute Co.,Ltd,Wuhan 430050,China

出  处:《China Geology》2024年第1期104-115,共12页中国地质(英文)

基  金:supported by the projects of the China Geological Survey(DD20221729,DD20190291);Zhuhai Urban Geological Survey(including informatization)(MZCD–2201–008).

摘  要:Machine learning is currently one of the research hotspots in the field of landslide prediction.To clarify and evaluate the differences in characteristics and prediction effects of different machine learning models,Conghua District,which is the most prone to landslide disasters in Guangzhou,was selected for landslide susceptibility evaluation.The evaluation factors were selected by using correlation analysis and variance expansion factor method.Applying four machine learning methods namely Logistic Regression(LR),Random Forest(RF),Support Vector Machines(SVM),and Extreme Gradient Boosting(XGB),landslide models were constructed.Comparative analysis and evaluation of the model were conducted through statistical indices and receiver operating characteristic(ROC)curves.The results showed that LR,RF,SVM,and XGB models have good predictive performance for landslide susceptibility,with the area under curve(AUC)values of 0.752,0.965,0.996,and 0.998,respectively.XGB model had the highest predictive ability,followed by RF model,SVM model,and LR model.The frequency ratio(FR)accuracy of LR,RF,SVM,and XGB models was 0.775,0.842,0.759,and 0.822,respectively.RF and XGB models were superior to LR and SVM models,indicating that the integrated algorithm has better predictive ability than a single classification algorithm in regional landslide classification problems.

关 键 词:Landslides susceptibility assessment Machine learning Logistic Regression Random Forest Support Vector Machines XGBoost Assessment model Geological disaster investigation and prevention engineering 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程] P642.22[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象