检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王寿元 李积元 郎永存 WANG Shou-yuan;LI Ji-yuan;LANG Yong-cun
出 处:《制造业自动化》2024年第1期154-160,共7页Manufacturing Automation
基 金:青海省科技厅项目(2020-ZJ-740)。
摘 要:刀具的健康状态直接影响着数控机床的加工性能。对刀具的磨损、破损等健康状态因素进行前期预测和判断,可有效防止因刀具健康状态异常而导致加工质量不稳定等问题。根据刀具在机加工过程中因磨损状况而引起机床机械特性的变化展开分析与研究,即通过采集与刀具健康状态相关联的机床主轴振动信号,并对该信号进行处理和特征提取,建立基于WOA-VMD-SVM刀具健康状态预测识别模型。经实验分析与验证,所建立的模型具有很高的识别准确率,其准确率高达96.8%,高于SVM模型和GA-SVM模型,由此表明该模型能够高效、准确地对刀具磨损状态进行识别和分类。
关 键 词:数控机床 刀具健康状态 变分模态分解 多尺度加权排列熵 支持向量机
分 类 号:TH17[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.120