检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郝鹏 HAO Peng(Xingtai Renze District Power Supply Branch of State Grid Hebei Electric Power Co.,Ltd.,Xingtai 055150,China)
机构地区:[1]国网河北省电力有限公司邢台市任泽区供电分公司,河北邢台055150
出 处:《通信电源技术》2023年第22期166-168,共3页Telecom Power Technology
摘 要:随着网络攻击的日益增多和复杂化,网络流量分析和威胁情报处理成为保护网络安全的重要任务。深度学习作为一种强大的机器学习方法,具有在复杂数据中提取特征和进行高级模式识别的能力,广泛应用于网络流量分析和威胁情报处理。首先介绍深度学习在网络流量分析中的应用,其次探讨深度学习在威胁情报处理中的应用,最后讨论深度学习在网络流量分析与威胁情报处理中面临的挑战,并提出可能的解决方案。With the increasing and complex network attacks,network traffic analysis and threat intelligence processing has become an important task to protect network security.As a powerful machine learning method,deep learning has the ability to extract features and advanced pattern recognition from complex data,and is widely used in the field of network traffic analysis and threat intelligence processing.This paper first introduces the application of deep learning in network traffic analysis,then discusses the application of deep learning in threat intelligence processing,and finally discusses the challenges faced by deep learning in network traffic analysis and threat intelligence processing,as well as the possible solutions.
分 类 号:TP393.08[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.192.32