检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李晓 李树强[1] 关里[1] Li Xiao;Li Shuqiang;Guan Li(Department of Occupational Disease,Peking University Third Hospital,Beijing 100191,China)
出 处:《中华劳动卫生职业病杂志》2023年第12期956-960,共5页Chinese Journal of Industrial Hygiene and Occupational Diseases
基 金:北京大学第三医院院临床重点项目(BYSYZD2022030);北京大学中公德善职业病发展项目(48014Y0232)。
摘 要:尘肺病是目前我国负担最重的职业病,其诊断主要依靠人工阅读X射线高千伏或数字化摄影胸片,存在效率低、主观性强、对临界病变无法准确判断等问题。随着机器辅助诊断技术的进步,人工智能诊断技术高效、客观、量化等特点恰好解决上述缺点。本文对目前应用人工智能技术尤其是深度学习模型进行尘肺病数字胸片诊断的研究进展进行综述,并结合常规人工读片局限性,以阐明人工智能技术在尘肺病数字胸片诊断中的应用前景,为未来该领域研究提供方向。Pneumoconiosis is the occupational disease with the highest burden in China currently.The diagnosis of pneumoconiosis mainly relies on manual reading of X-ray high-kilovoltage or digital photography chest radiograph,which has some problems such as low efficiency,strong subjectivity,and cannot accurately judge the critical lesions.With the progress of machine-aided diagnosis technology,the efficient,objective and quantitative of artificial intelligence diagnosis technology just solve the shortcomings above.This paper reviews the research progress in digital chest radiography diagnosis of pneumoconiosis using artificial intelligence technology,especially deep learning model,combined with the limitations of conventional manual reading,in order to clarify the application prospect of artificial intelligence technology in the diagnosis of pneumoconiosis by digital chest radiography,and provide a direction for future research in this field.
分 类 号:R135.2[医药卫生—劳动卫生] R816.4[医药卫生—公共卫生与预防医学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.46.208