Accelerated Stochastic Peaceman–Rachford Method for Empirical Risk Minimization  

在线阅读下载全文

作  者:Jian-Chao Bai Feng-Miao Bian Xiao-Kai Chang Lin Du 

机构地区:[1]Research&Development Institute of Northwestern Polytechnical University in Shenzhen,Shenzhen,518057,Guangdong,China [2]School of Mathematics and Statistics,Northwestern Polytechnical University,Xi’an 710129,Shaanxi,China [3]Department of Mathematics,The Hong Kong University of Science and Technology,Hong Kong,China [4]School of Science,Lanzhou University of Technology,Lanzhou,730050,Gansu,China [5]School of Mathematics and Statistics,the MIIT Key Laboratory of Dynamics and Control of Complex Systems,Northwestern Polytechnical University,Xi’an 710129,Shaanxi,China

出  处:《Journal of the Operations Research Society of China》2023年第4期783-807,共25页中国运筹学会会刊(英文)

基  金:supported by the National Natural Science Foundation of China(Nos.12001430,11972292 and 12161053);the China Postdoctoral Science Foundation(No.2020M683545);the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515012405).

摘  要:This work is devoted to studying an accelerated stochastic Peaceman–Rachford splitting method(AS-PRSM)for solving a family of structural empirical risk minimization problems.The objective function to be optimized is the sum of a possibly nonsmooth convex function and a finite sum of smooth convex component functions.The smooth subproblem in AS-PRSM is solved by a stochastic gradient method using variance reduction technique and accelerated techniques,while the possibly nonsmooth subproblem is solved by introducing an indefinite proximal term to transform its solution into a proximity operator.By a proper choice for the involved parameters,we show that AS-PRSM converges in a sublinear convergence rate measured by the function value residual and constraint violation in the sense of expectation and ergodic.Preliminary experiments on testing the popular graph-guided fused lasso problem in machine learning and the 3D CT reconstruction problem in medical image processing show that the proposed AS-PRSM is very efficient.

关 键 词:Empirical risk minimization Convex optimization Stochastic Peaceman-Rachford method Indefinite proximal term Complexity 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象