检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:方旭源 金炜[1] 符冉迪[1] 李纲[1] 何彩芬 尹曹谦[1] FANG Xuyuan;JIN Wei;FU Randi;LI Gang;HE Caifen;YI Caoqian(Faculty of Electrical Engineering and Computer Science,Ningbo University,Ningbo 315211,China;Zhenhai District Meteorological Bureau,Ningbo 315202,China)
机构地区:[1]宁波大学信息科学与工程学院,宁波315211 [2]宁波市镇海区气象局,宁波315210
出 处:《遥感学报》2023年第12期2736-2747,共12页NATIONAL REMOTE SENSING BULLETIN
基 金:国家自然科学基金(编号:42071323);浙江省自然科学基金(编号:LY20H180003);宁波市公益类科技计划项目(编号:202002N3104)。
摘 要:海雾是海上一种常见的天气现象,它使能见度降低,给海上交通和作业带来极大威胁。传统的卫星遥感海雾监测算法在准确率、可移植性及自动化程度等方面都有待改善。本文在注意力机制下,利用卫星遥感云图,提出一种多尺度特征融合生成对抗网络的白天海雾监测方法。该方法引入通道注意力机制,通过学习不同输入通道的权重,提升了网络对于重要通道云图的关注度;在此基础上,采用多尺度特征融合以获取海雾的多尺度信息,使提取的特征能兼顾海雾的整体及细节特性;为了进一步提高算法对于对海雾边缘的界定能力,本文引入对抗网络对海雾监测的生成网络进行监督,从而得到更精细的海雾区域。在测试云图的海雾监测实验中,命中率(POD)、临界成功指数(CSI)及误报率(FAR)分别为90.5%、81.28%和10.86%,均优于传统海雾监测方法以及其他基于深度学习的方法,这表明本文方法可以有效提升海雾监测的精度,研究成果对于海上船只航行、渔业生产、国防军事等具有重要意义。Sea fog is a common weather phenomenon at sea.It will reduce visibility at sea and greatly threaten maritime traffic and other operations.Traditional sea fog detection algorithms using satellite remote sensing have low accuracy,poor portability,and low automation.Although some existing deep learning-based sea fog monitoring algorithms have been improved,they do not consider the spectral characteristics of sea fog in different channels.The accuracy of sea fog monitoring is also low,especially in edge recognition.A daytime sea fog detection method,which is based on multi-scale feature fusion of generated adversarial network under attention mechanism,is proposed to improve the accuracy of sea fog detection.First,according to the spectral response of sea fog in different imaging channels of meteorological satellite,the satellite cloud images of different imaging channels that can reflect the characteristics of sea fog are selected as the input of the network.Meanwhile,a channel attention mechanism is introduced to calculate the weights of different input channels for prioritizing significant imaging channels within multichannel input.Then,a multi-scale feature fusion mechanism is adopted to fuse the feature maps of different levels of the network for obtaining the multi-scale features of the sea fog.In this way,the problem of losing detailed features in cloud images caused by the pooling operation of the traditional deep network can be solved.Finally,given the difficulty of traditional methods to accurately describe the edge of sea fog,a generation network for sea fog detection supervised by an adversarial network is used to accurately define the edge of sea fog and reduce the false alarm rate.This study takes the Yellow Sea and the Bohai Sea(116.5°—128.25°E,30°—42.5°N)as the research area.Given that March to June each year is the period of high incidence of sea fog in the Yellow Sea and the Bohai Sea,we produce a dataset based on the weather satellite monitoring report of the National Meteorological Center f
关 键 词:海雾监测 卫星遥感 注意力机制 生成对抗网络 多尺度特征融合
分 类 号:TP701[自动化与计算机技术—检测技术与自动化装置] P2[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.107