检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴维崧 涂福泉[1] 罗迎九 杨家瑜 韩天宇 汪曙峰 涂楚杰 WU Weisong;TU Fuquan;LUO Yingjiu;YANG Jiayu;HAN Tianyu;WANG Shufeng;TU Chujie(Key Laboratory of Metallurgical Equipment and Control,Ministry of Education,Wuhan University of Science and Technology,Wuhan 430081,China;WISDRI Engineering&Research Incorporation Limited,Wuhan 430080,China;Heraeus TROT(Wuhan)Engineering and Technology Co.,Ltd.,Wuhan 430070,China)
机构地区:[1]武汉科技大学冶金装备及其控制教育部重点实验室,武汉430081 [2]中冶南方武汉钢铁设计研究院有限公司,武汉430080 [3]贺利氏创特(武汉)工程技术有限公司,武汉430070
出 处:《包装工程》2024年第3期201-207,共7页Packaging Engineering
基 金:国家自然科学基金(51701145)。
摘 要:目的 针对目前表面缺陷检测方法因缺少实例级标签,使深度神经网络在工业检测上的应用受到限制的问题。本文面向实际的纸板表面缺陷检测任务,提出弱监督学习下融合卷积和注意力机制的神经网络算法。方法 该网络通过将通道注意力模块和梯度类激活映射模块相结合,进一步提高类激活图的精细度,实现纸板表面缺陷的精确定位;同时通过倒残缺结构和上采样层的组合操作,进一步细化浅层特征提升网络的特征提取能力,加快网络收敛速度。结果 通过在公开的纸板缺陷数据集上进行实验,本文提出的算法在使用图像级标签训练的情况下,分类正确率与定位正确率分别达到99.0%和92.2%,验证了该算法的有效性。结论 避免了实例级标签数量较少和过于主观的缺点,为基于机器人的缺陷纸板剔除奠定了基础。The application of deep neural networks in industrial inspection is limited due to the lack of instance-level labels.To address this issue,the work aims to propose a neural network algorithm that combines convolution and attention mechanisms under weakly supervised learning for practical surface defect detection on cardboard.By integrating channel attention modules and gradient-based activation mapping modules,this network enhanced the precision of class activation maps and realized the precise localization of cardboard surface defects.Additionally,a combination of inverted residual structures and upsampling layers was utilized to refine shallow features and improve the network's feature extraction capabilities,thereby accelerating the convergence speed.Experiments were carried out on the publicly available cardboard defect dataset,achieving classification accuracy and localization accuracy of 99.0%and 92.2%respectively under the training with image-level labels and demonstrating the effectiveness of the proposed algorithm.The disadvantages of a small number of instance-level labels and excessive subjectivity are avoided,which lays a foundation for the removal of defective cardboard based on robots.
关 键 词:弱监督学习 对象定位 深度学习 纸板表面缺陷检测 自注意力
分 类 号:TB487[一般工业技术—包装工程] TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15