检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王凌云[1] 周翔[1] 田恬 杨波[2] 李世春[1] WANG Lingyun;ZHOU Xiang;TIAN Tian;YANG Bo;LI Shichun(College of Electrical Engineering and New Energy,China Three Gorges University,Yichang 443002,China;State Grid Wuhan Power Supply Company,Wuhan 430015,China)
机构地区:[1]三峡大学电气与新能源学院,湖北宜昌443002 [2]国网武汉供电公司,湖北武汉430015
出 处:《电力自动化设备》2024年第2期190-197,共8页Electric Power Automation Equipment
基 金:国家自然科学基金资助项目(51907104)。
摘 要:为提高电力负荷预测精度,需考虑区域内不同地区多维气象信息对电力负荷影响的差异性。在空间维度上,提出多维气象信息时空融合的方法,利用Copula理论将多座气象站的风速、降雨量、温度、日照强度等气象信息与电力负荷进行非线性耦合分析并实现时空融合。在时间维度上,采用海洋捕食者算法(MPA)实现变分模态分解(VMD)核心参数的自动寻优,并采用加权排列熵构造MPA-VMD适应度函数,实现负荷序列的自适应分解。通过将时间维度各分量与空间维度各气象信息进行融合构造长短期记忆(LSTM)网络模型与海洋捕食者算法-最小二乘支持向量机(MPA-LSSVM)模型的输入集,得到各分量预测结果,根据评价指标选择各分量对应的预测模型,重构得到整体预测结果。算例分析结果表明,所提预测模型优于传统预测模型,有效提高了电力负荷预测精度。In order to improve the accuracy of power load forecasting,it is needed to consider the influence difference of multi-dimensional meteorological information on power load in different places of a region.In the spatial dimension,a spatio-temporal fusion method of multi-dimensional meteorological information is proposed,and the Copula theory is used for the nonlinear coupling analysis between meteorological information of multiple meteorological stations such as wind speed,rainfall,temperature,sunshine intensity and power load,so as to realize spatio-temporal fusion.In the time dimension,the marine predator algorithm(MPA)is adopted to realize the automatic optimization of core parameters of variational modal decomposition(VMD),and the weighted permutation entropy is adopted to construct the adaptation function of MPA-VMD,which realizes the adaptive decomposition of load sequence.The input sets of long short-term memory(LSTM)network model and marine predator algorithm-least squares support vector machine(MPA-LSSVM)model are constructed by fusing each component of time dimension and each meteorological information of spatial dimension,the forecasting results of each component are obtained,the forecasting model corresponding to each component is selected according to the evaluation index,and the overall forecasting results are reconstructed.The example analysis results show that the proposed forecasting method is better than the traditional forecasting method,and effectively improves the accuracy of power load forecasting.
关 键 词:短期电力负荷预测 海洋捕食者算法 时空融合 COPULA理论 变分模态分解
分 类 号:TM715[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44