检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:冯佩云 钱育蓉[1,2,3] 范迎迎 魏宏杨 秦雨刚 莫王昊 FENG Peiyun;QIAN Yurong;FAN Yingying;WEI Hongyang;QIN Yugang;MO Wanghao(School of Software,Xinjiang University,Urumqi 830091,China;Key Laboratory of Signal Detection and Processing,Xinjiang Uygur Autonomous Region,Urumqi 830046,China;Key Laboratory of Software Engineering,Xinjiang University,Urumqi 830091,China;School of Information Management,Xinjiang University of Finance and Economics,Urumqi 830012,China)
机构地区:[1]新疆大学软件学院,新疆乌鲁木齐830091 [2]新疆维吾尔自治区信号检测与处理重点实验室,新疆乌鲁木齐830046 [3]新疆大学软件工程重点实验室,新疆乌鲁木齐830091 [4]新疆财经大学信息管理学院,新疆乌鲁木齐830012
出 处:《微电子学与计算机》2024年第1期63-73,共11页Microelectronics & Computer
基 金:国家自然科学基金(61966035);自治区科技厅国际合作项目(2020E01023);国家自然科学基金联合基金重点项目(U1803261);自治区自然科学基金(2021D01C083);自治区科技计划青年科学基金(2022D01C83)。
摘 要:针对安全帽检测中,目标形状、尺度变化大,易出现漏检、误检等问题,提出了一种基于改进级联基于区域的卷积神经网络(Cascade R-CNN)的安全帽检测算法。首先,对ResNet50进行改进形成D-ResNet50,利用可变形卷积仅增加少量参数就可增大感受野的特性,对特征提取网络的C2~C5卷积层进行重塑,提高网络对目标几何变换的适应能力和特征提取能力。其次,将D-ResNet50作为主干网络引入Cascade R-CNN,形成级联目标检测器,在每个阶段对正负样本重采样,抑制误检问题。再次,对递归特征金字塔进行改进,更高效地进行多尺度特征融合,并且基于反馈信息对特征进行二次处理,增强特征表达,提高网络的分类和定位能力。最后,使用Soft-非极大值抑制(Soft-NMS)进行后处理,进一步解决漏检问题。提出的方法在Hard hat workers数据集上的AP值相比检测基线提高了3.5%,与Sparse R-CNN、TridentNet、VFnet等先进算法相比分别提升了4.7%、5.9%、2.3%等。Aiming at the problems of large changes in target shape and scale,which are prone to missed detection and false detection in safety helmet detection,a safety helmet detection algorithm based on improved Cascade Region-based Convolutional Neural Networks(Cascade R-CNN)is proposed.Firstly,ResNet50 is improved to form D-ResNet50,which can increase the perceptual field by using the feature of deformable convolution with only a small increase of parameters,and reshape the C2 to C5 convolutional layers of the feature extraction network to improve the network's adaptability to target geometric transformation and feature extraction capability.Secondly,D-ResNet50 is introduced into Cascade R-CNN as the backbone network to form a cascade target detector.Convolutional Neural Networks(CNN)to form a cascade target detector,resampling positive and negative samples at each stage to suppress the false detection problem.Thirdly,the recursive feature pyramid is improved to perform multi-scale feature fusion more efficiently,and the features are processed twice based on feedback information to enhance feature representation and improve the classification and localization ability of the network.Finally,post-processing is performed using Soft-Non-Maximum Suppression(Soft-NMS)to further solve the problem of missed detection.The proposed method improves the AP value on Hard hat workers dataset by 3.5%compared to the detection baseline,and by 4.7%,5.9%,2.3%,etc.compared to the advanced algorithms such as Sparse RCNN,TridentNet,and VFnet,respectively.
关 键 词:安全帽检测 多尺度特征融合 反馈连接 可变形卷积 Cascade R-CNN CARAFE
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] TP391.41[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38