IndRT-GCNets: Knowledge Reasoning with Independent Recurrent Temporal Graph Convolutional Representations  

在线阅读下载全文

作  者:Yajing Ma Gulila Altenbek Yingxia Yu 

机构地区:[1]College of Information Science and Engineering,Xinjiang University,Urumqi,830017,China [2]Xinjiang Laboratory of Multilanguage Information Technology,Xinjiang University,Urumqi,830017,China [3]The Base of Kazakh and Kirghiz Language of National Language Resource Monitoring and Research Center on Minority Languages,Xinjiang University,Urumqi,830017,China

出  处:《Computers, Materials & Continua》2024年第1期695-712,共18页计算机、材料和连续体(英文)

基  金:the National Natural Science Founda-tion of China(62062062)hosted by Gulila Altenbek.

摘  要:Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurrent Temporal Graph Convolution Networks(IndRT-GCNets)framework to efficiently and accurately capture event attribute information.The framework models the knowledge graph sequences to learn the evolutionary represen-tations of entities and relations within each period.Firstly,by utilizing the temporal graph convolution module in the evolutionary representation unit,the framework captures the structural dependency relationships within the knowledge graph in each period.Meanwhile,to achieve better event representation and establish effective correlations,an independent recurrent neural network is employed to implement auto-regressive modeling.Furthermore,static attributes of entities in the entity-relation events are constrained andmerged using a static graph constraint to obtain optimal entity representations.Finally,the evolution of entity and relation representations is utilized to predict events in the next subsequent step.On multiple real-world datasets such as Freebase13(FB13),Freebase 15k(FB15K),WordNet11(WN11),WordNet18(WN18),FB15K-237,WN18RR,YAGO3-10,and Nell-995,the results of multiple evaluation indicators show that our proposed IndRT-GCNets framework outperforms most existing models on knowledge reasoning tasks,which validates the effectiveness and robustness.

关 键 词:Knowledge reasoning entity and relation representation structural dependency relationship evolutionary representation temporal graph convolution 

分 类 号:O15[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象