检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张军[1,2] 姜文涛[1,2] 张云 罗婷倚 余秋琴 杨哲 ZHANG Jun;JIANG Wentao;ZHANG Yun;LUO Tingyi;YU Qiuqin;YANG Zhe(National Engineering Laboratory of Highway Maintenance Equipment,Chang’an University,Xi’an 710064,China;Key Laboratory of Road Construction Technology and Equipment of the Ministry of Education,Chang’an University,Xi’an 710064,China;Guangxi Beitou Highway Construction Investment Group Co.,Ltd.,Nanning 530028,China;Guangxi Transportation Science and Technology Group Co.,Ltd.,Nanning 530007,China)
机构地区:[1]长安大学公路养护装备国家工程实验室,陕西西安710064 [2]长安大学道路施工技术与装备教育部重点实验室,陕西西安710064 [3]广西北投公路建设投资集团有限公司,广西南宁530028 [4]广西交科集团有限公司,广西南宁530007
出 处:《同济大学学报(自然科学版)》2024年第1期104-114,121,共12页Journal of Tongji University:Natural Science
基 金:广西省交通运输行业重点科技项目(19-09);陕西省自然科学基础研究计划(2022JM-249);陕西省交通厅项目(20-30X)
摘 要:针对探地雷达(GPR)数据解译依赖于人工经验,存在费时费力和主观偏差的问题,提出了基于极限梯度提升(XGBoost)和GPR时频特征的水泥路面脱空识别方法。采用正演模拟、室内试验和现场试验获得了脱空病害数据源,建立含有标签的脱空GPR数据集;通过重采样方法统一GPR数据采样频率,并对预处理后的GPR数据进行时频域特征提取,建立了包含18个时域和12个频域特征的数据集。以时频域特征为输入,是否存在脱空病害为输出,采用XGBoost算法构建脱空识别模型,并与随机森林(RF)和人工神经网络(ANN)算法进行对比。结果表明,模型的识别准确率排序为XGBoost(98.10%)>ANN(95.10%)>RF(93.17%),XGBoost模型识别精度最高,并能在实际路面上准确定位脱空区域。Ground penetrating radar(GPR)is an effective method of void detection,but GPR data interpretation depends on human experience,being time consuming and laborious,or even existing subjective bias.To address above issues,a cement pavement void identification method based on XGBoost and GPR timefrequency features was proposed.To automatically identify cement pavement void area,the finite difference time domain method,lab and field tests were carried out,and GPR void dataset with label was created.Then,the resampling method was used to obtain the same sample frequency.Thirty time and frequency domain features,including 18 time-domain features and 12 frequencydomain features,were extracted from the post-processed GPR data.Taking the time-frequency domain feature as an input,and void label as an output,XGBoost was used to build a void identification model.The random forest(RF)and artificial neural network(ANN)were also trained to compare with XGBoost.The comparison results indicate that the accuracy ranking is XGBoost(98.10%)>ANN(95.10%)>RF(93.17%).The accuracy of the XGBoost method is the highest and verified by field tests.
关 键 词:道路养护 探地雷达(GPR) 脱空病害 极限梯度提升(XGBoost) 时频域特征
分 类 号:U418[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49