检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马乃轩 付文博 杨少华 齐麟 武略 MA Naixuan;FU Wenbo;YANG Shaohua;QI Lin;WU Lue(Shandong Hi-Speed Engineering Testing Co.,Ltd.,Jinan 250002,China;Key Laboratory for Bridge Structure Big Data,Performance Diagnosis and Treatment Improvement of Transportation Industry,Jinan 250002,China;Beijing Smartbow Technology Co.,Ltd.,Beijing 100096,China)
机构地区:[1]山东高速工程检测有限公司,山东济南250002 [2]桥梁结构大数据与性能诊治提升交通运输行业重点实验室,山东济南250002 [3]北京源清慧虹信息科技有限公司,北京100096
出 处:《电子设计工程》2024年第4期56-60,共5页Electronic Design Engineering
基 金:山东省工信厅科研项目(202160101201)。
摘 要:在桥梁监测数据缺失重构过程中受到不同缺失数据之间相关性约束,容易出现删除或被忽略问题,导致数据缺失重构效果变差,针对该问题,设计基于FSOM神经网络的桥梁监测数据缺失重构算法。利用FSOM神经网络聚类分层处理桥梁监测数据。采用时空相关性分析方法,结合协方差评定两个缺失数据之间的线性相关性。计算时空相关数据与缺失数据之间相关权重,引入支持向量回归算法构建重构决策函数,通过FSOM神经网络更新权重,输出桥梁监测数据缺失重构结果。分析实验结果可知,该算法与实际重构数据存在最大为1 bit的误差,能够重构不同时间段内缺失桥梁的监测数据,缺失数据重构效果好。In the process of bridge monitoring data loss reconstruction,it is constrained by the correlation between different missing data,which is easy to be deleted or ignored,resulting in poor data loss reconstruction effect.To solve this problem,a bridge monitoring data loss reconstruction algorithm based on FSOM neural network is designed.FSOM neural network is used to process bridge monitoring data by clustering and layering.The linear correlation between the two missing data was evaluated by using spatiotemporal correlation analysis and covariance.Calculate the correlation weight between spatiotemporal correlation data and missing data,introduce support vector regression algorithm to construct reconstruction decision function,update the weight through FSOM neural network,and output the reconstruction results of missing bridge monitoring data.The analysis of the experimental results shows that the maximum error between the algorithm and the actual reconstruction data is 1 bit.The analysis of the experimental results shows that the maximum error between the algorithm and the actual reconstruction data is 1 bit.The algorithm can reconstruct the missing bridge monitoring data in different time periods,and the reconstruction effect of data missing is good.
关 键 词:FSOM神经网络 桥梁监测数据 缺失重构 时空相关
分 类 号:TN919.5[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28