检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙晨 邓宽 SUN Chen;DENG Kuan(School of Mechanical,Yancheng Institute of Technology,Yancheng 224051,China;School of Electronic Information Engineering,Jinling Institute of Technology,Nanjing 211169,China)
机构地区:[1]盐城工学院机械工程学院,江苏盐城224051 [2]金陵科技学院电子信息工程学院,江苏南京211169
出 处:《电子设计工程》2024年第4期129-134,共6页Electronic Design Engineering
摘 要:针对光伏电池片易受材料、生产工艺等因素影响,产生诸多缺陷且检测难度高等问题,设计了一套以嵌入式AI设备Jetson Xavier NX为控制单元的智能检测分拣系统。该系统利用电致发光成像技术采集图像,选用以ResNet50为主干的Faster RCNN网络结构作为目标检测算法,并融入特征金字塔网络(FPN)提高网络对多尺度缺陷的特征表达能力。并采用六轴机械臂将各类残片分拣至指定区域。经实验测试,检测的平均精度为92.4%,能够满足实际生产需求。An intelligent detection and sorting system based on embedded AI device Jetson Xavier NX was designed to solve the problem that photovoltaic cells are susceptible to many defects and difficult to detect due to factors such as materials and production process.In this system,electroluminescence imaging technology is used for image acquisition,ResNet50 based Faster RCNN network structure is selected as the target detection algorithm,and the Feature Pyramid Network(FPN) is used to improve the feature expression ability of multi-scale defects.Use six-axis manipulator to sort all kinds of debris to the designated area.The test results show that the average accuracy is 92.4%,which can meet the actual production needs.
关 键 词:缺陷检测 Jetson Xavier NX 电致发光 Faster RCNN FPN
分 类 号:TN06[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229