Cluster-Based Massive Access for Massive MIMO Systems  

在线阅读下载全文

作  者:Shiyu Liang Wei Chen Zhongwen Sun Ao Chen Bo Ai 

机构地区:[1]State Key Laboratory of Advanced Rail Autonomous Operation,Beijing Jiaotong University,Beijing 100091,China [2]School of Electronic and Information Engineering,Beijing Jiaotong University,Beijing 100091,China [3]Frontiers Science Center for Smart High-speed Railway System,Beijing Jiaotong University,Beijing 100091,China [4]Key Laboratory of Railway Industry of Broadband Mobile Information Communications,Beijing Jiaotong University,Beijing 100091,China [5]Beijing Engineering Research Center of High-speed Railway Broadband Mobile Communications,Beijing Jiaotong University,Beijing 100091,China [6]School of Information Engineering,Zhengzhou University,Zhengzhou 450001,China

出  处:《China Communications》2024年第1期24-33,共10页中国通信(英文版)

基  金:supported by Natural Science Foundation of China(62122012,62221001);the Beijing Natural Science Foundation(L202019,L211012);the Fundamental Research Funds for the Central Universities(2022JBQY004)。

摘  要:Massive machine type communication aims to support the connection of massive devices,which is still an important scenario in 6G.In this paper,a novel cluster-based massive access method is proposed for massive multiple input multiple output systems.By exploiting the angular domain characteristics,devices are separated into multiple clusters with a learned cluster-specific dictionary,which enhances the identification of active devices.For detected active devices whose data recovery fails,power domain nonorthogonal multiple access with successive interference cancellation is employed to recover their data via re-transmission.Simulation results show that the proposed scheme and algorithm achieve improved performance on active user detection and data recovery.

关 键 词:compressive sensing dictionary learning multiuser detection random access 

分 类 号:TN929.5[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象