检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孟飞 徐增丙[1] 王志刚[1] MENG Fei;XU Zengbing;WANG Zhigang(School of Mechanical Automation,Wuhan University of Science and Technology,Wuhan 430081,Hubei,China)
机构地区:[1]武汉科技大学机械自动化学院,湖北武汉430081
出 处:《农业装备与车辆工程》2024年第1期157-161,共5页Agricultural Equipment & Vehicle Engineering
摘 要:针对夹送辊历史数据少和相关寿命预测方法匮乏的问题,提出基于Yu范数深度迁移度量学习的夹送辊剩余寿命预测方法。首先使用Yu范数深度度量学习(DMN-Yu)对振动信号提取深层特征,并以主成分分析法(PCA)和自组织映射神经网络(SOM)相结合对特征进行约简,构建一维健康因子(HI);再结合长短时记忆网络(LSTM)模型,通过迁移策略利用共享隐含层的方法对目标夹送辊进行预测分析。实验验证,经过深度迁移学习的LSTM模型预测效果更好,对夹送辊设备的健康状态评估及剩余使用寿命预测具有一定的指导意义。To address the problems of little historical data of pinch rolls and the lack of relevant life prediction methods,a method for predicting the remaining life of pinch rolls based on Yu parametric deep migration metric learning was proposed.Firstly,Yu parametric depth metric learning(DMN-Yu)was used to extract deep features from vibration signals,and the features were combined with principal component analysis(PCA)and self-organizing mapping neural network(SOM)to construct a one-dimensional health factor(HI)by reduction.Then,the target pinch rolls were predicted and analyzed by a migration strategy using a shared hidden layer approach in combination with a long and short term memory network(LSTM)model.The experiment verified that the LSTM model with deep migration learning had a better prediction effect,which was a guideline for the health state assessment and remaining service life prediction of pinch rolls equipment.
关 键 词:夹送辊 寿命预测 Yu范数 深度度量学习 共享隐含层迁移
分 类 号:TH113[机械工程—机械设计及理论] TG333.1[金属学及工艺—金属压力加工]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90