High-throughput design of perpendicular magnetic anisotropy at quaternary Heusler and MgO interfaces  

在线阅读下载全文

作  者:Sicong Jiang Kesong Yang 

机构地区:[1]Department of Nano and Chemical Engineering,University of California San Diego,La Jolla,CA 92093-0448,USA [2]Program of Materials Science and Engineering,University of California San Diego,La Jolla,CA 92093-0418,USA [3]Center for Memory and Recording Research,University of California San Diego,La Jolla,CA 92093-0401,USA

出  处:《npj Computational Materials》2023年第1期1084-1091,共8页计算材料学(英文)

基  金:This work was supported by the Academic Senate General Campus Research Grant Committee at the University of California San Diego;This work used the Expanse cluster at San Diego Supercomputer Center through allocation DMR160045 from the Extreme Science and Engineering Discovery Environment(XSEDE),which was supported by National Science Foundation grant number#1548562,Acknowl-edgement is made to the donors of the American Chemical Society Petroleum Research Fund for partial support of this research.

摘  要:Heusler alloys combined with MgO interfaces exhibit interfacial perpendicular magnetic anisotropy, making them attractive forenergy-efficient spintronic technologies. However, finding suitable Heusler/MgO heterostructures with desired properties ischallenging due to the vast range of compositions available and the complexity of interfacial structures, particularly for theemerging quaternary Heusler compounds. In this study, we report a high-throughput screening of quaternary-Heusler/MgOheterostructures for spintronic applications. By analyzing various materials descriptors, including formation energy, convex hulldistance, magnetic ordering, lattice misfit, magnetic anisotropy constant, tunnel magnetoresistance, Curie temperature, and atomicsite disordering, we identified 5 promising compounds out of 27,000 quaternary Heusler compounds. These compounds, namelyIrCrAlTi, IrCrGaTi, IrMnZnTi, OsCrAlTa, and TaGaOsCr, show potential for designing energy-efficient perpendicular magnetic tunneljunctions. This work demonstrates an efficient approach using open quantum materials repositories, effective materials descriptors,and high-throughput computational techniques to accelerate the discovery of quaternary-Heusler-based functional materials.

关 键 词:QUATERNARY ANISOTROPY magnetic 

分 类 号:TG13[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象