检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Changwen Xu Yuyang Wang Amir Barati Farimani
机构地区:[1]Department of Materials Science and Engineering,Carnegie Mellon University,5000 Forbes Ave,Pittsburgh 15213 PA,USA [2]Department of Mechanical Engineering,Carnegie Mellon University,5000 Forbes Ave,Pittsburgh 15213 PA,USA [3]Machine Learning Department,Carnegie Mellon University,5000 Forbes Ave,Pittsburgh 15213 PA,USA [4]Department of Chemical Engineering,Carnegie Mellon University,5000 Forbes Ave,Pittsburgh 15213 PA,USA
出 处:《npj Computational Materials》2023年第1期1703-1716,共14页计算材料学(英文)
摘 要:Accurate and efficient prediction of polymer properties is of great significance in polymer design.Conventionally,expensive and time-consuming experiments or simulations are required to evaluate polymer functions.Recently,Transformer models,equipped with self-attention mechanisms,have exhibited superior performance in natural language processing.However,such methods have not been investigated in polymer sciences.Herein,we report TransPolymer,a Transformer-based language model for polymer property prediction.Our proposed polymer tokenizer with chemical awareness enables learning representations from polymer sequences.Rigorous experiments on ten polymer property prediction benchmarks demonstrate the superior performance of TransPolymer.Moreover,we show that TransPolymer benefits from pretraining on large unlabeled dataset via Masked Language Modeling.Experimental results further manifest the important role of self-attention in modeling polymer sequences.We highlight this model as a promising computational tool for promoting rational polymer design and understanding structure-property relationships from a data science view.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.232