Machine learning guided high-throughput search of non-oxide garnets  

在线阅读下载全文

作  者:Jonathan Schmidt Hai-Chen Wang Georg Schmidt Miguel A.L.Marques 

机构地区:[1]Institut für Physik,Martin-Luther-Universität Halle-Wittenberg,D-06099 Halle,Germany

出  处:《npj Computational Materials》2023年第1期1717-1725,共9页计算材料学(英文)

摘  要:Garnets have found important applications in modern technologies including magnetorestriction,spintronics,lithium batteries,etc.The overwhelming majority of experimentally known garnets are oxides,while explorations(experimental or theoretical)for the rest of the chemical space have been limited in scope.A key issue is that the garnet structure has a large primitive unit cell,requiring a substantial amount of computational resources.To perform a comprehensive search of the complete chemical space for new garnets,we combine recent progress in graph neural networks with high-throughput calculations.We apply the machine learning model to identify the potentially(meta-)stable garnet systems before performing systematic density-functional calculations to validate the predictions.We discover more than 600 ternary garnets with distances to the convex hull below 100 meV⋅atom−1.This includes sulfide,nitride,and halide garnets.We analyze their electronic structure and discuss the connection between the value of the electronic band gap and charge balance.

关 键 词:structure SULFIDE OXIDES 

分 类 号:O62[理学—有机化学] TP181[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象