检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yufeng Luo Mengke Li Hongmei Yuan Huijun Liu Ying Fang
机构地区:[1]Key Laboratory of Artificial Micro-and Nano-Structures of Ministry of Education and School of Physics and Technology,Wuhan University,Wuhan 430072,China [2]School of Computer Science,Wuhan University,Wuhan 430072,China
出 处:《npj Computational Materials》2023年第1期2322-2332,共11页计算材料学(英文)
基 金:We thank financial support from the National Natural Science Foundation of China(Grant No.62074114).
摘 要:Over the past few decades,molecular dynamics simulations and first-principles calculations have become two major approaches to predict the lattice thermal conductivity(κ_(L)),which are however limited by insufficient accuracy and high computational cost,respectively.To overcome such inherent disadvantages,machine learning(ML)has been successfully used to accurately predictκL in a high-throughput style.In this review,we give some introductions of recent ML works on the direct and indirect prediction ofκL,where the derivations and applications of data-driven models are discussed in details.A brief summary of current works and future perspectives are given in the end.
关 键 词:CONDUCTIVITY LATTICE THERMAL
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222