基于云计算的大数据聚类挖掘算法研究  

在线阅读下载全文

作  者:何庆 钟维坚 覃志智 林锋 唐苏东 

机构地区:[1]中国移动信息技术有限公司

出  处:《中国新通信》2023年第24期19-21,共3页China New Telecommunications

摘  要:基于云计算的大数据聚类挖掘,需要结合改进粒子群算法、k-means算法的优势,提出基于改进粒子群优化(Particle Swarm Optimization,PSO)的k-means聚类算法,设置自调节惯性权重、云变异算子,根据数据集种群的进化程度,调整粒子群算法的全局搜索、局部搜索能力,追踪数据粒子的个体极值、全局极值,更新每个数据个体在解空间中的点位置、更新速度,并在数据种群进化到一定程度时进行变异操作,选择全局极值作为期望Ex来控制种群迭代次数,避免数据挖掘陷入早熟收敛、局部最优解的情况。

关 键 词:云计算 大数据 k-means聚类挖掘算法 粒子群优化 

分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象