机构地区:[1]宁波市疾病预防控制中心环境与职业卫生所,浙江宁波315010 [2]宁波市第一医院,浙江宁波315000
出 处:《预防医学》2024年第2期152-155,158,共5页CHINA PREVENTIVE MEDICINE JOURNAL
基 金:浙江省公益技术应用研究计划项目(LGF20H260005,LGF22H220002);宁波市医学重点学科项目(2022-B18);宁波市自然科学基金项目(202003N4222)。
摘 要:目的 了解介入放射治疗与放射检查工作人员甲状腺激素指标情况,为放射职业人群职业健康监护提供依据。方法 通过宁波市疾病预防控制中心个人剂量监测数据库和宁波市某三甲医院职业健康体检中心收集介入放射治疗与放射检查工作人员资料,包括人口学信息、体质指数(BMI)、甲状腺激素指标和5年累积个人剂量等,分析工种、5年累积个人剂量不同人员的甲状腺激素指标,并采用多因素有序logistic回归模型分析甲状腺激素指标的影响因素。结果 介入放射治疗与放射检查工作人员各159人资料纳入分析,甲状腺激素指标异常率分别为9.43%和12.26%,差异无统计学意义(P>0.05)。介入放射治疗工作人员的三碘甲状腺原氨酸(T3)和游离三碘甲状腺原氨酸(FT3)水平分别为(1.54±0.41) nmol/L和(5.13±1.07) pmol/L,低于放射检查工作人员的(1.68±0.34) nmol/L和(5.55±0.87) pmol/L(均P<0.05)。5年累积个人剂量<1.5 m Sv、1.5~<3.0 m Sv、≥3.0 m Sv的人员T3分别为(1.69±0.31)、(1.69±0.40)和(1.52±0.41) nmol/L,FT3分别为(5.60±0.83)、(5.32±0.94)和(5.14±1.09) pmol/L,差异有统计学意义(均P<0.05)。多因素有序logistic回归分析结果显示,BMI (<18.5 kg/m2,OR=0.111,95%CI:0.028~0.436)和5年累积个人剂量(<1.5 mSv,OR=6.259,95%CI:2.368~16.547)是T3的影响因素,工种(放射检查,OR=3.171,95%CI:1.529~6.574)、BMI (18.5~<24.0 kg/m2,OR=0.393,95%CI:0.184~0.842)和性别(男,OR=3.449,95%CI:1.294~9.190)是FT3的影响因素。结论 职业照射对介入放射治疗与放射检查工作人员的甲状腺激素指标有一定影响,主要影响因素为BMI、照射剂量、工种和性别。Objective To learn the levels of thyroid hormone indicators among interventional and diagnostic radiologists, so as to provide insights into occupational health monitoring of radiologists. Methods Demographic information, body mass index (BMI), thyroid hormone indicators and cumulative individual doses over 5 years among interventional and di⁃ agnostic radiologists were collected through the personal dosimetry monitoring database of Ningbo Center for Disease Con⁃ trol and Prevention and the Occupational Health Examination Center of a tertiary hospital in Ningbo City. The thyroid hormone indicators of different job types and cumulative individual doses over 5 years were analyzed, and factors affect⁃ing the thyroid hormone indicators were identified using a multivariable ordinal logistic regression model. Results There were 159 interventional and 159 diagnostic radiologists included, and the proportions of abnormal thyroid hormone indicators were 9.43% and 12.26%, respectively, with no statistically significant difference (P>0.05). The levels of triio⁃ dothyronine and free triiodothyronine in interventional radiologists were lower than those in diagnostic radiologists [(1.54± 0.41) vs. (1.68±0.34) nmol/L, (5.13±1.07) vs. (5.55±0.87) pmol/L;both P<0.05]. The levels of triiodothyronine and free triiodothyronine were significantly different among radiologists with cumulative individual doses over 5 years of < 1.5 mSv, 1.5-<3.0 mSv and ≥3.0 mSv [(1.69±0.31), (1.69±0.40) vs. (1.52±0.41) nmol/L, (5.60±0.83), (5.32±0.94) vs. (5.14±1.09) pmol/L;both P<0.05]. Multivariable ordinal logistic regression analysis identified BMI (<18.5 kg/m2, OR= 0.111, 95%CI: 0.028-0.436) and cumulative individual doses over 5 years (<1.5 mSv, OR=6.259, 95%CI: 2.368- 16.547) as the factors affecting triiodothyronine, and job types (diagnostic radiologists, OR=3.171, 95%CI: 1.529-6.574), BMI (18.5-<24.0 kg/m2, OR=0.393, 95%CI: 0.184-0.842), and gender (men, OR=3.449, 95%CI: 1.294-9.190) as the factors affecting free triiodoth
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...