检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:亓红强 钱本华 QI Hongqiang;QIAN Benhua(Department of Information Science and Engineering,Northeastern University,Shenyang 110819,China)
机构地区:[1]东北大学信息科学与工程学院,辽宁沈阳110819
出 处:《仪表技术与传感器》2023年第12期58-62,68,共6页Instrument Technique and Sensor
摘 要:文中主要针对危险环境,设计了基于强化学习的分布式安全预警系统。其中,系统硬件选用FPGA作为边缘控制器构建分布式危险响应端,软件结合了多传感器数据融合技术和基于模型的强化学习算法进行环境参数预测与危险判断。首先,利用FPGA连接RL78/G15传感器阵列作为边缘控制器,进行环境参数的准确采集和高速并行运算;其次,应用基于支持度的算法对多组传感器阵列的检测值进行数据融合;最后,改进基于模型的强化学习算法,结合蒙特卡洛树搜索进行数据预测以及危险判断。仿真结果显示,系统有效地减轻了计算任务,同时提高了准确性。The paper primarily focuses on hazardous environments and presents a design of the distributed safety warning sys-tem based on the reinforcement learning method.The system comprises hardware components,with FPGA serving as the edge con-troller for distributed hazard response,and software components that integrate multi-sensor data fusion and reinforcement learning algorithms for environmental parameter prediction and hazard detection.Firstly,an RL78/G15 sensor array is employed as an edge controller on FPGA for accurate data acquisition and high-speed parallel computation.Secondly,a support-based algorithm is ap-plied to fuse the detection values from multiple sensor arrays.Finally,an improved model-based reinforcement learning algorithm is developed,incorporating Monte Carlo tree search(MCTs)for data prediction and hazard detection.This approach effectively reduces computational tasks while enhancing accuracy.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.146.157