基于响应面法的钛合金Halbach阵列增强磁流变抛光工艺参数优化  被引量:1

Optimization of Process Parameters for Halbach Array-Enhanced Magnetorheological Polishing of Titanium Alloy Based on Response Surface Method

在线阅读下载全文

作  者:廖煜晖 周宏明[1] 张泽林 陈卓杰 张祥雷 周芬芬 冯铭 LIAO Yuhui;ZHOU Hongming;ZHANG Zelin;CHEN Zhuojie;ZHANG Xianglei;ZHOU Fenfen;FENG Ming(School of Electromechanical Engineering,Wenzhou University,Zhejiang Wenzhou 325035,China;School of Intelligent Manufacturing,Taizhou University,Zhejiang Taizhou 318000,China)

机构地区:[1]温州大学机电工程学院,浙江温州325035 [2]台州学院智能制造学院,浙江台州318000

出  处:《表面技术》2024年第3期53-64,共12页Surface Technology

基  金:温州市重大科技创新攻关项目(ZG2022029);浙江省自然科学基金(LQ22E050008,LQ19E050010)。

摘  要:目的提高钛合金磁流变抛光的表面质量和抛光效率。方法用Halbach磁场阵列强化磁场,通过载液盘与磁铁反向旋转来增强磁流变抛光效率,使抛光头拥有更强的恢复性与自锐性。通过仿真模拟和实际测量对比研究Halbach阵列与N-S阵列的磁场分布和磁场梯度。依照试验结果描述抛光剪切力、表面粗糙度与表面微观形貌随时间的变化规律。采用响应面法优化载液盘转速、磁铁转速和加工间距等3个工艺参数,建立剪切力和表面粗糙度的拟合方程数学预测模型,并对其中的不显著项进行优化。结果在响应面交互作用分析中,工艺参数对剪切力的影响的大小顺序为加工间距、磁铁转速、载液盘转速;对表面粗糙度影响的大小顺序为载液盘转速、磁铁转速、加工间距。根据不同的需求,确定选定范围内的工艺参数组合,需要快速去除材料时,使剪切力趋于最大值的工艺参数组合为载液盘转速227 r/min,磁铁转速64 r/min,加工间距0.1 mm,通过20 min抛光后得到了表面粗糙度S_(a)为34.911 nm的光滑表面。抛光过程中,钛合金抛光所受剪切力τ为0.812 N。需要最优表面质量时,使表面粗糙度值趋于最小值的工艺参数组合为载液盘转速300 r/min,磁铁转速150 r/min,加工间距0.1 mm,通过20 min抛光后得到了表面粗糙度S_(a)为26.723 nm的光滑表面。抛光过程中,钛合金抛光所受剪切力τ为0.796 N。结论Halbach阵列拥有较高的磁场强度和富有空间变化的磁感线,能够使磁流变液中的磁链呈现出更多的姿态变化。根据响应面法优化后的剪切力和表面粗糙度预测模型,预测结果与验证试验结果相差很小,预测模型的准确度与可信度较高。It is a titanium alloy magnetorheological polishing method that uses a Halbach magnetic field array to increase the magnetic field.By changing the magnetic array to a circular Halbach magnetic field and rotating the liquid-carrier disk and magnetic array in reverse,the polishing tool can have stronger resilience and self sharpening without changing the material or number of magnets,thereby improving the magnetorheological polishing efficiency of titanium alloy.The work aims to study the interactive impacts of process factors on Halbach array improved magnetorheological polishing and develop and optimize a mathematical prediction model for shear force and surface roughness by response surface methods.With size TC4 titanium alloy as the polishing specimen,the test specimen was firstly cross-polished with 10000 grit sandpaper to remove the surface oxide layer.The test specimen was then placed in a sealed bag,the workpiece was soaked in anhydrous ethanol and sealed and subject to 30 minutes of ultrasonic cleaning to eliminate surface contaminants.During the experiment,an appropriate volume of magnetorheological fluid was introduced to the outside of the liquid-carrier disk.The magnetorheological fluid adsorbed on the liquid-carrier disk in the presence of a magnetic field to produce a flexible polishing tool.The liquid-carrier disk rotated at nc to force the abrasive particles on the surface of the polishing tool to polish the workpiece.To generate a dynamic magnetic field,the Halbach array magnet rotated at a speed of nm concentric and opposite to the liquid-carrier disk.The shear force was measured with a force measuring device(Kistler 9139AA)and the effect of process parameters on polishing force was examined.After the experiment,the workpiece was soaked in deionized water,sealed in a bag,and subject to ultrasonic cleaning to eliminate any remaining pollutants on the surface.The polishing center with the best polishing quality was selected as the sampling point,the surface morphology of the test specimen sampling

关 键 词:磁流变抛光 Halbach磁场阵列 钛合金 响应面法 剪切力 表面粗糙度 

分 类 号:TG178[金属学及工艺—金属表面处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象