异构边缘环境下基于蚁群系统的用户分配  

Ant Colony Based User Allocation in Edge Networks with Heterogeneous Computing Devices

在线阅读下载全文

作  者:曹绍华[1] 代聪聪 詹子俊 张卫山[1] 郑丹阳 CAO Shao-hua;DAI Cong-cong;ZHAN Zi-jun;ZHANG Wei-shan;ZHENG Dan-yang(Qingdao Institute of Software,College of Computer Science and Technology,China University of Petroleum(East China),Qingdao 266580,China;School of Computing and Artificial Intelligence,Southwest Jiaotong University,Chengdu 611756,China)

机构地区:[1]中国石油大学(华东)青岛软件学院、计算机科学与技术学院,山东青岛266580 [2]西南交通大学计算机与人工智能学院,四川成都611756

出  处:《中国电子科学研究院学报》2023年第12期1119-1128,共10页Journal of China Academy of Electronics and Information Technology

基  金:国家自然科学基金资助项目(62072469);研究生创新工程项目(YCX2021129)。

摘  要:边缘计算是一种新兴的计算范式,将任务分配至边缘服务器可有效提升用户满意度。然而,如何将用户与合适的边缘服务器匹配实现特定优化目标是一项挑战。多数现有解决方案未能充分考虑设备异构性和网络复杂性对分配策略的影响。为此,首先,建立了设备异构和干扰感知的用户分配问题模型;然后,提出了双向排序贪婪算法和启发式蚁群系统算法,旨在提高用户分配率,同时降低平均任务延迟。实验结果表明,所提出的方法有效地解决了问题,并且在性能上优于其他三种代表性的方法。Edge computing(EC)is an emerging computing paradigm that enables application providers to serve users by allocating them to nearby edge servers,thereby reducing content delivery latency.However,matching users with the suitable edge servers to accomplish specific optimization goals is challenging.Most existing solutions ignore the impact of device heterogeneity and network complexity on the allocation policy.In this paper,we formally model the device heterogeneity and interference-aware user allocation(Hi-UA)problem and propose the bidirectional sorting greedy(DSort)algorithm and heuristic ant colony system(HAS)algorithm to improve the user allocation rate while reducing the average task latency.Extensive experiments are conducted to assess the performance of the DSort and HAS methods using real user allocation datasets.The results demonstrate that the proposed methods effectively solve the Hi-UA problem and outperform the other three representative methods.

关 键 词:边缘计算 通信干扰 用户分配 设备异构 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象