基于EEMD-LSTM组合模型石家庄月降水量预测研究  被引量:1

在线阅读下载全文

作  者:秦壮 

机构地区:[1]河北省石家庄水文勘测研究中心,石家庄050000

出  处:《水利科技与经济》2024年第2期105-108,119,共5页Water Conservancy Science and Technology and Economy

摘  要:为了探讨EEMD-LSTM算法对石家庄逐月降水量进行预测的可行性,通过对石家庄市1980-2020年降水数据进行分析发现,该地降水具有不稳定性和复杂性。为解决这一问题,采用经验模态分解(EEMD)方法对降水数据进行预处理,并将提取出的各模态每个子序列(IMF)输入到LSTM神经网络中进行预测。结果表明,EEMD-LSTM算法在石家庄逐月降水量预测中具有较好的性能,其预测结果与实际观测值的误差较小,相应的MAE和RMSE分别为2.12、3.13mm,决定系数为0.92。研究表明,EEMD-LSTM算法可作为一种新的有效工具,用于石家庄市降水量预测研究。

关 键 词:EEMD分解 LSTM回归 降水量 预测 

分 类 号:TV125[水利工程—水文学及水资源]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象