整合生物信息学与实验验证解析黄芪-莪术药对抗肝癌配伍机制  被引量:3

Mechanisms of Astragali Radix-Curcumae Rhizoma herb pair for anti-hepatocellular carcinoma by integrating bioinformatics and experimental validation

在线阅读下载全文

作  者:鲍宁 陈子超 刘名玉 赵春芹 李肖 张振[1] BAO Ning;CHEN Zichao;LIU Mingyu;ZHAO Chunqin;LI Xiao;ZHANG Zhen(Innovation Institute of Chinese Medicine and Pharmacy,Shandong University of Traditional Chinese Medicine,Jinan 250355,China;College of Pharmacy,Shandong University of Traditional Chinese Medicine,Jinan 250355,China;Experimental Center,Shandong University of Traditional Chinese Medicine,Jinan 250355,China)

机构地区:[1]山东中医药大学中医药创新研究院,山东济南250355 [2]山东中医药大学药学院,山东济南250355 [3]山东中医药大学实验中心,山东济南250355

出  处:《中草药》2024年第1期114-126,共13页Chinese Traditional and Herbal Drugs

基  金:国家自然科学基金资助项目(21775061);国家自然科学基金资助项目(82204656);泰山学者青年专家计划项目(tsqn202211136);济南市“新高校20条”资助项目(202228085);山东省高等学校青创人才引育计划项目(2021505031);山东中医药大学青年创新团队支持计划项目(22202105)。

摘  要:目的整合生物信息学、网络药理学及分子对接技术预测黄芪-莪术药对抗肝癌配伍机制,并进行细胞实验验证。方法利用R软件包Limma分析GEO数据库中肝癌基因表达数据,筛选肝癌靶点;通过TCMSP数据库结合文献报道,筛选潜在活性成分;采用TCMSP、SEA和SwissTargetPrediction数据库进行成分靶点预测,筛选抗肝癌靶点;对靶点进行京都基因与基因组百科全书(Kyoto encyclopedia of genes and genomes,KEGG)通路富集分析;构建蛋白质-蛋白质相互作用网络、成分-靶点网络、关键成分-靶点-通路网络,并结合网络贡献指数,筛选关键肝癌靶点、关键抗肝癌成分及其靶点、核心抗肝癌成分及其靶点;使用Autodock Vina软件对核心成分与核心靶点进行分子对接;通过细胞实验,验证所预测成分抗肝癌活性及其作用机制。结果预测得到黄芪-莪术抗肝癌活性成分33个,抗肝癌靶点180个,关键肝癌靶点112个;筛选后得到关键成分29个,对应靶点15个;KEGG通路分析显示关键成分主要通过协同影响细胞周期、细胞衰老、p53信号通路等发挥配伍作用;进一步筛选得到核心成分6个(黄芪中黄芪皂苷Ⅱ、黄芪甲苷、芒柄花素,莪术中莪术醇、姜黄素、双去甲氧基姜黄素),对应靶点5个[细胞周期蛋白依赖性激酶1(cyclin-dependent kinase 1,CDK1)、DNA拓扑异构酶2A(topoisomerase 2A,TOP2A)、极光激酶B(aurora B,AURKB)、检查点蛋白激酶1(check point kinase 1,CHEK1)、AURKA]。细胞实验结果显示,黄芪-莪术药对6个核心成分均对HepG2细胞增殖具有显著的抑制作用(P<0.01),且黄芪皂苷Ⅱ与双去甲氧基姜黄素具有协同增效作用;黄芪皂苷Ⅱ与双去甲氧基姜黄素可通过下调细胞周期相关蛋白表达水平(P<0.05、0.01),进而阻滞细胞周期。结论黄芪-莪术药对的多种活性成分通过作用于相同或不同靶点抑制细胞周期、p53信号通路等相同或不同相关信号关通路,从而发挥协�Objective To analyze the combination mechanisms of Huangqi(Astragali Radix)-Ezhu(Curcumae Rhizoma)herb pair in treatment of hepatocellular carcinoma(HCC)by integrating bioinformatics,network pharmacology and molecular docking,and further verified by cell experiments.Methods HCC targets were analyzed by HCC gene expression data in GEO database using R package Limma;Active compounds were screened by TCMSP database and literature reports;TCMSP,SEA and Swiss TargetPrediction databases were used for compound targets prediction;R language was used to perform Kyoto encyclopedia of genes and genomes(KEGG)pathway enrichment analysis on targets;Protein-protein interaction network,compound-target network and key compoundtarget-pathway network were constructed and combined with network contribution index to screen key HCC targets,key anti-HCC compounds and their targets,core anti-HCC compounds and their targets;Molecular docking of core compounds and core targets was performed using Autodock Vina software.The anti-HCC activities and mechanism of predicted components were verified by cellular assays.Results There were 33 anti-HCC active compounds,180 anti-HCC targets and 112 key HCC targets in Astragali RadixCurcumae Rhizoma herb pair;There were 29 key ingredients,corresponding to 15 targets;KEGG pathway analysis showed that key targets involved cell cycle,cellular senescence,p53 signaling pathway,etc.Six core ingredients(formononetin,astragaloside II,astragalosideⅣin Astragali Radix,bisdemethoxycurcumin,curcumin,curcumol in Curcumae Rhizoma)corresponding to five targets[cyclin-dependent kinase 1(CDK1),topoismoerase 2a(TOP2a),aurora B(AURKB),check point kinase 1(CHEK1)and AURKA];The results of cell experiment showed that six compounds of Astragali Radix-Curcumae Rhizoma herb pair significantly inhibited the proliferation of HepG2 cells(P<0.01),astragaloside II and bisdemethoxycurcumin had a synergistic effect;Astragaloside II and bisdemethoxycurcumin significantly induced cell cycle arrest in G2/M phase by downregulating ce

关 键 词:黄芪 莪术 肝癌 配伍机制 生物信息学 网络药理学 细胞周期 黄芪皂苷Ⅱ 双去甲氧基姜黄素 

分 类 号:R285.5[医药卫生—中药学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象