检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海烟草集团有限责任公司上海卷烟厂,上海200082
出 处:《今日制造与升级》2023年第12期40-42,共3页Manufacture & Upgrading Today
摘 要:针对烟草生产过程中叶丝干燥工序的含水率波动较大、人工干预强度大等问题,提出了一种基于机器学习的叶丝含水率预测模型。由于生产过程中存在数据失去时序对应关系和数采不完整,导致模型准确度较低,为解决此问题,基于k近邻思想进行标签噪声过滤,剔除受到不可控因素影响的数据,然后利用CatBoost回归模型对叶丝干燥工序之前的叶丝膨胀工序入口含水率进行预测。实验结果表明,该模型能够有效地预测叶丝膨胀入口含水率,辅助提前修正后续工序相关参数,减少后续叶丝干燥工序的人为操作,可提高生产效率,降低品质波动。文中的方法具有一定的实用性和推广价值。
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7