检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蔡蓬勃[1] 孙玉肖 CAI Pengbo;SUN Yuxiao(The Fourth Hospital of Hebei Medical University,Shijiazhuang 050000,China)
出 处:《自动化与仪器仪表》2024年第1期56-60,共5页Automation & Instrumentation
基 金:河北省医学科学课题《新疫情形势下基于第二代SPA技术医疗行业零信任安全架构与应用》(20221275)。
摘 要:为了解决软件定义网络(Software Defined Network, SDN)网络流量测量的节点选择中,受环境影响因素导致选择节点的效率低下和估计精度不够的问题。研究以蚁群优化的测量节点选择方法和小流推测的异常检测机制为基础,在蚁群优化算法的基础上加入领域搜索算法进行改进;并且提出以小流推测为基础的网络异常检测机制,对多种网络安全异常进行识别。实验结果显示,改进的蚁群优化算法(Ant Colony Optimization, ACO)算法准确性由0.504提高到1.000;收敛性由0.483提高到0.721;单位时间开销由0.905控制降低到了0.105。数据表明优化后的ACO算法在SDN网络中流量测量的精确度得到了提高。以小流推测为基础的网络异常及检测方法在网络安全实验中表现出了优良的识别异常的能力,可以广泛应用在数据安全保障方面。In order to solve the problem of low efficiency and insufficient estimation accuracy in node selection for software defined network(SDN)traffic measurement due to environmental factors.Based on the measurement node selection method of ant colony optimization and the anomaly detection mechanism of small flow speculation,a domain search algorithm is added to improve the ant colony optimization algorithm;And propose a network anomaly detection mechanism based on small flow speculation to identify various network security anomalies.The experimental results show that the accuracy of the improved Ant Colony Optimization(ACO)algorithm has been improved from 0.504 to 1.000;The convergence has been improved from 0.483 to 0.721;The unit time cost has been reduced from 0.905 to 0.105.The data shows that the optimized ACO algorithm has improved the accuracy of traffic measurement in SDN networks.The network anomaly and detection method based on small flow speculation has shown excellent ability to identify anomalies in network security experiments,and can be widely applied in data security assurance.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.45.231