STRONG CONVERGENCE OF JUMP-ADAPTED IMPLICIT MILSTEIN METHOD FOR A CLASS OF NONLINEAR JUMP-DIFFUSION PROBLEMS  

在线阅读下载全文

作  者:Xu Yang Weidong Zhao 

机构地区:[1]School of Mathematics,China University of Mining and Technology,Xuzhou 221116,China [2]School of Mathematics,Shandong University,Jinan 250100,China

出  处:《Journal of Computational Mathematics》2024年第1期248-270,共23页计算数学(英文)

基  金:supported by the National Natural Science Foundation of China(Grant Nos.11901565,12071261,11831010,11871068);by the Science Challenge Project(No.TZ2018001);by National Key R&D Plan of China(Grant No.2018YFA0703900).

摘  要:In this paper,we study the strong convergence of a jump-adapted implicit Milstein method for a class of jump-diffusion stochastic differential equations with non-globally Lipschitz drift coefficients.Compared with the regular methods,the jump-adapted methods can significantly reduce the complexity of higher order methods,which makes them easily implementable for scenario simulation.However,due to the fact that jump-adapted time discretization is path dependent and the stepsize is not uniform,this makes the numerical analysis of jump-adapted methods much more involved,especially in the non-globally Lipschitz setting.We provide a rigorous strong convergence analysis of the considered jump-adapted implicit Milstein method by developing some novel analysis techniques and optimal rate with order one is also successfully recovered.Numerical experiments are carried out to verify the theoretical findings.

关 键 词:JUMP-DIFFUSION Jump-adapted implicit Milstein method Poisson jumps Strong convergence rate Non-Lipschitz coefficients 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象