检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国南方航空股份有限公司
出 处:《民航管理》2024年第1期88-93,共6页CIVIL AVIATION MANAGEMENT
摘 要:民航的信息收集和分析工作是确保航班安全高效运行的重要组成部分,但目前对于该岗位的工作负荷缺乏一种定量、系统的评价与预测方法。本文以航行情报工作中的航行通告岗位为例,基于机器学习构建工作负荷预测模型。采用基于信息类别的灰色关联分析,并利用时间“近大远小”原则从历史数据中得到相似日数据,提高训练集的信息关联度,并根据集成学习理念进行数据预测。以南方航空的航行通告系统后台历史数据进行实验验证,该预测模型的均方根误差、平均绝对相对误差以及相对系数等性能指标都相对较小。基于此,本文认为该预测模型具有更高的预测精度和推广价值,在物流、电力等需要处理时间序列数据和进行负荷预测的行业具有普适性。
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222