The Investigation of Data Voting Algorithm for Train Air-Braking System Based on Multi-Classification SVM and ANFIS  

在线阅读下载全文

作  者:Juhan WANG Ying GAO Yuan CAO Tao TANG 

机构地区:[1]School of Electronics and Information Engineering,Beijing Jiaotong University,Beijing 100044,China [2]Graduate Department,China Academy of Railway Science,Beijing 100044,China [3]National Engineering Research Center of Rail Transportation Operation and Control System,Beijing Jiaotong University,Beijing 100044,China

出  处:《Chinese Journal of Electronics》2024年第1期274-281,共8页电子学报(英文版)

基  金:supported by the National Key R&D Program of China(Grant No.2021YFF0501102);the National Natural Science Foundation of China(Grant Nos.U1934219,52022010,and 52202392)。

摘  要:The pressure data of the train air braking system is of great significance to accurately evaluate its operation state.In order to overcome the influence of sensor fault on the pressure data of train air braking system,it is necessary to design a set of sensor fault-tolerant voting mechanism to ensure that in the case of a pressure sensor fault,the system can accurately identify and locate the position of the faulty sensor,and estimate the fault data according to other normal data.A fault-tolerant mechanism based on multi-classification support vector machine(SVM)and adaptive network-based fuzzy inference system(ANFIS)is introduced.Multi-classification SVM is used to identify and locate the system fault state,and ANFIS is used to estimate the real data of the fault sensor.After estimation,the system will compare the real data of the fault sensor with the ANFIS estimated data.If it is similar,the system will recognize that there is a false alarm and record it.Then the paper tests the whole mechanism based on the real data.The test shows that the system can identify the fault samples and reduce the occurrence of false alarms.

关 键 词:Multi-classification support vector machine Adaptive network-based fuzzy inference system Train air braking system Fault-tolerant voting Multi-sensors. 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程] U270.35[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象