检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:金冬子 李莹玉 高大化 石光明 肖泳 JIN Dongzi;LI Yingyu;GAO Dahua;SHI Guangming;XIAO Yong(Peng Cheng Laboratory,Shenzhen 518055,China;School of Electronic Information and Communications,Huazhong University of Science and Technology,Wuhan 430074,China;School of Mechanical Engineering and Electronic Information China University of Geosciences,Wuhan 430074,China;School of AI,Xidian University,Xi'an 710071,China)
机构地区:[1]鹏城实验室,广东深圳518055 [2]华中科技大学电信学院,湖北武汉430074 [3]中国地质大学(武汉)机械与电子信息学院,湖北武汉430074 [4]西安电子科技大学人工智能学院,陕西西安710071
出 处:《移动通信》2024年第2期34-40,共7页Mobile Communications
基 金:国家自然科学基金“面向6G群体智能资源共享博弈基础理论研究”(62071193);国家自然科学基金“面向智能语义理解的计算成像方法研究”(61976169);国家自然科学基金“语义通信基础理论与方法研究”(62293483);国家自然科学基金“基于多通道压缩感知的高分辨高动态范围红外成像方法研究”(61871304);鹏城实验室重大攻关项目(PCL2021A12);中央高校基本科研业务费资助,HUST“基于联邦学习的数字孪生网络建模研究”(2023JYCXJJ029)
摘 要:数字孪生网络是一种新兴的技术架构,通过对物理网络中的实体进行数字化表示,有望实现物理网络与孪生网络的闭环系统。然而,在传统通信网络框架下仍然难以满足数字孪生网络高保真度、高时效性和高资源利用率等需求。语义认知网络作为一种智能的信息交互范式,侧重对数据含义的理解和处理,可显著提高传输效率和准确性,从而满足数字孪生网络高保真度和高时效性的需求。为此,提出了一种基于语义认知网络的数字孪生网络架构。该架构通过融合语义认知网络,可实现高保真度的孪生体模型构建、网络决策的智能优化以及高效的数据传输。在该架构的基础上,以基于语义认知网络的网络数据增强为案例,验证了语义认知网络可以在模型聚合过程中同时考虑样本数据量和分布相似性,训练得到具备生成高精度合成数据的孪生模型。Digital twin network is an emerging technological architecture that aims to create a closed-loop system between physical and twin networks via digitally representing the entities in the physical network.However,it is still difficult for traditional communication architecture to meet the high-fidelity,real-time responsiveness,and efficient resource utilization requirements of digital twin networks.As an intelligent paradigm for information interaction,semantic-aware network focuses on understanding and processing the data meaning,significantly improving transmission efficiency and accuracy to meet the high-fidelity and high-timeliness requirements of digital twin networks.Therefore,a digital twin network architecture based on semantic-aware networks is proposed.By integrating semantic-aware networks,the proposed architecture can achieve high-fidelity twin model construction,intelligent optimization of network decisions,and efficient data transmission.Using semantic-aware networks in the context of network data augmentation as a case study,it is demonstrated that semantic-aware networks can simultaneously consider the data quantity and distribution similarity during the model aggregation process,resulting in a twin model capable of generating high-precision synthetic data.
分 类 号:TN915[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.149.230.241