考虑充电设施的无人机配送路径规划研究  被引量:1

Research on Unmanned Aerial Vehicles Delivery Route Planning Considering Charging Facilities

在线阅读下载全文

作  者:冯文静 卢福强 王素欣 毕华玲 王雷震[1] FENG Wenjing;LU Fuqiang;WANG Suxin;BI Hualing;WANG Leizhen(College of Information Science and Engineering,Northeastern University,Shenyang 110819,China;School of Economics and Management,Yanshan University,Qinhuangdao 066004,China)

机构地区:[1]东北大学信息科学与工程学院,辽宁沈阳110819 [2]燕山大学经济与管理学院,河北秦皇岛066004

出  处:《控制工程》2024年第2期331-340,共10页Control Engineering of China

基  金:国家重点研发计划项目(2020YFB1712802);国家自然科学基金资助项目(71401027);河北省高等学校人文社会科学研究项目(SQ202002)。

摘  要:为解决偏远农村地区物流配送存在的困难,对无人机配送进行系统性规划,共分3个阶段:考虑到续航里程限度,建立了充电设施选址模型;从绿色路由的角度,以最小化总能耗作为目标,建立了考虑充电设施的无人机多包裹配送路径规划模型;根据实际无人机数量进行任务分配,建立了任务分配模型。第一、三阶段的模型应用SCIP求解器求解。对第二阶段的混合整数非线性规划模型,设计了双层启发式算法CW节约-改进和修复乌鸦搜索算法(CW-IRCSA)求解。实验表明,对于洪格尔高勒镇的案例,充电设施的选址有利于节约资源,能得到能耗最低的配送路径,且任务分配合理;对于100个及以下的需求点规模,与CW节约-离散修复乌鸦搜索算法(CW-DRCSA)、CW节约-修复模拟退火(CW-RSA)相比,CW-IRCSA算法具有较高的求解精确度;在偏远地区,相对于传统卡车配送模式,无人机配送成本平均节约61.45%。In order to solve the difficulties in logistics and delivery in remote rural areas,the UAV delivery system is systematically planned,and it is divided into three stages:Considering the limit of cruising range,a model for the location of charging facilities is established;from the perspective of green routing,with minimizing total energy consumption as the objective function,a multi-package delivery route planning model for drones considering charging facilities is established;task allocation is carried out according to the actual number of drones,and a task allocation model is established.The models in the first and third stages are solved by the SCIP solver.For the mixed-integer nonlinear programming model in the second-stage,a two-layer heuristic algorithm CW-IRCSA is designed.Experiments have shown that,for the case of Honggelgaole Town,the location of charging facilities is conducive to resource conservation,the lowest energy consumption delivery path is obtained,and the task allocation is reasonable.Compared with CW-DRCSA and CW-RSA,the CW-IRCSA algorithm has higher solution accuracy for cases that have less than 100 demand points;in remote areas,compared with the traditional truck delivery model,the UAV delivery system can save cost about 61.45%on average.

关 键 词:物流工程 无人机配送 充电设施选址 能耗最低 乌鸦搜索算法 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象