Convergence analysis of an infeasible quasi- Newton bundle method for nonsmooth convex programming  

在线阅读下载全文

作  者:Jie SHEN Fangfang GUO Liping PANG 

机构地区:[1]School of Mathematics,Liaoning Normal University,Dalian 116029,China [2]School of Mathematical Sciences,Dalian University of Technology,Dalian 116024,China

出  处:《Frontiers of Mathematics in China》2023年第5期367-380,共14页中国高等学校学术文摘·数学(英文)

摘  要:By utilizing the improvement function,we change the nonsmooth convex constrained optimization into an unconstrained optimization,and construct an infeasible quasi-Newton bundle method with proximal form.It should be noted that the objective function being minimized in unconstrained optimization subproblem may vary along the iterations(it does not change if the null step is made,otherwise it is updated to a new function).It is necessary to make some adjustment in order to obtain the convergence result.We employ the main idea of infeasible bundle method of Sagastizabal and Solodov,and under the circumstances that each iteration point may be infeasible for primal problem,we prove that each cluster point of the sequence generated by the proposed algorithm is the optimal solution to the original problem.Furthermore,for BFGS quasi-Newton algorithm with strong convex objective function,we obtain the condition which guarantees the boundedness of quasi-Newton matrices and the R-linear convergence of the iteration points.

关 键 词:Non-smooth optimization convex constraint improvement function bundle method quasi-Newton direction 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象