The Dirac Equation on Metrics of Eguchi-Hanson Type Ⅱ with Negative Constant Scalar Curvature  

在线阅读下载全文

作  者:Junwen CHEN Xiaoman XUE Xiao ZHANG 

机构地区:[1]School of Physical Science and Technology,Guangxi University,Nanning 530004,Guangxi,China [2]Guangxi Center for Mathematical Research,Guangxi University,Nanning 530004,Guangxi,China [3]Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China [4]School of Mathematical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

出  处:《Chinese Annals of Mathematics,Series B》2023年第6期893-912,共20页数学年刊(B辑英文版)

基  金:supported by the Special Foundations for Guangxi Ba Gui Scholars;Junwu Scholars of Guangxi University

摘  要:On metrics of Eguchi-Hanson type Ⅱ with negative constant Ricci curvatures,the authors show that there is no nontrivial Killing spinor.On metrics of Eguchi-Hanson type Ⅱ with negative constant scalar curvature,they show that there is no nontrivial L p eigenspinor for 0<p<2 if the eigenvalue has nontrivial real part,and no nontrivial L^(2)eigenspinor if either the eigenvalue has trivial real part or the eigenvalue is real,the eigenspinor is isotropic and the parameterηin radial and angular equations for eigenspinors is real.They also solve harmonic spinors and eigenspinors explicitly on metrics of EguchiHanson type Ⅱ with certain special potentials.

关 键 词:Metric of Eguchi-Hanson type II Killing spinor Eigenspinor 

分 类 号:O411.1[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象