Application of Medical Image Detection Technology Based on Deep Learning in Pneumoconiosis Diagnosis  被引量:3

在线阅读下载全文

作  者:Shengguang Peng 

机构地区:[1]School of Engineering and Management,Pingxiang University,Pingxiang 337055,Jiangxi,China [2]School of Information and Control Engineering,China University of Mining and Technology,Xuzhou 22100o,Jiangsu,China

出  处:《Data Intelligence》2023年第4期1033-1047,共15页数据智能(英文)

摘  要:Pneumoconiosis is a disease characterized by pulmonary tissue deposition caused by dust exposure in the workplace.In China,due to the large number and wide distribution of pneumoconiosis patients,there is a high demand for the case data of lung biopsy during the diagnosis of pneumoconiosis.This text studied the application of medical image detection technology in pneumoconiosis diagnosis based on deep learning(DL).A medical image detection and convolution neural network(CNN)based on DL was analyzed,and the application of DL medical image technology in pneumoconiosis diagnosis was researched.The experimental results in this paper showed that in the last round of testing,the accuracy of ResNet model including deconvolution structure reached 95.2%.The area under curve(AUC)value of the working characteristics of the subject is 0.987.The sensitivity was 99.66%,and the specificity was 88.61%.The non staging diagnosis of pneumoconiosis improved the diagnostic sensitivity while ensuring high specificity.At the same time,Delong test method was used to conduct AUC analysis on the three models,and the results showed that model C was more effective than model A and model B.There is no significant difference between model A and model B,and there is no significant difference in diagnostic efficiency.In a word,the diagnosis of the model has high sensitivity and low probability of missed diagnosis,which can greatly reduce the working pressure of diagnostic doctors and effectively improve the efficiency of diagnosis.

关 键 词:Pneumoconiosis Diagnosis Deep Learning Medical Image Detection Lung Imaging Convolutional Neural Network 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象