Zr-Sn-Nb包壳管腐蚀吸氢中氢浓度测算的截面金相法  被引量:1

A Novel Cross-sectional Metallography Method for Determining Hydrogen Absorption Concentration and Hydrogen Absorption Amount of Zr-Sn-Nb Alloy Cladding Caused by High Temperature Water Corrosion

在线阅读下载全文

作  者:马雁[1] 蓝宇宁 陈嘉威 MA Yan;LAN Yuning;CHEN Jiawei(School of Nuclear Science and Engineering,North China Electric Power University,Beijing 102206,China)

机构地区:[1]华北电力大学核科学与工程学院,北京102206

出  处:《中国腐蚀与防护学报》2024年第1期261-266,共6页Journal of Chinese Society For Corrosion and Protection

基  金:国家自然科学基金(12275083);国家科技重大专项(2019ZX06004009)。

摘  要:利用RH600/LECO定氢仪对Zr-Sn-Nb包壳管多个样品获取氢浓度的数据,结合样品横截面显微图像测量获取的氢化物面积分数的数据,推导出一种用于测算Zr-Sn-Nb包壳管中氢浓度的计算公式,即“截面金相法”。通过用文献中大量已知数据对该测算方法进行验证,结果表明,运用“截面金相法”测算出的氢浓度值准确度较高,与标称氢浓度值之间的误差<6%。Corrosion and hydrogen absorption of zirconium alloy cladding for PWRs is one of the main causes for cladding embrittlement and breakage failure.Therefore,rapid and accurate determination of hydrogen concentrations in zirconium alloys is of great importance to assess the integrity of the cladding.In this paper,we used the RH600/LECO hydrogen analyzer to measure the hydrogen concentration data for several samples of Zr-Sn-Nb cladding,meanwhile the corresponding data of hydrogenated area fraction were acquired by cross-sectional microscopic image measurements.On the bases of the two group of data,a formula was proposed to figure out the distribution of hydrogen concentrations in ZrSn-Nb cladding,namely the so called cross-sectional metallography method.This method was validated by using a large amount of known data from the existing literatures.The results showed that the hydrogen concentration values measured by the cross-sectional metallography method were highly accurate,and the error between the hydrogen concentration value and the nominal value is less than 6%.

关 键 词:Zr-Sn-Nb 包壳管 腐蚀吸氢 截面金相法 

分 类 号:TG172[金属学及工艺—金属表面处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象